四道数学分析求极限的题,详细点,谢谢!

asdfop
2012-05-05 · TA获得超过2149个赞
知道小有建树答主
回答量:823
采纳率:100%
帮助的人:354万
展开全部
1. x=1/n
lim(x->0)[cosx-e^(-xx/2)]/x^4
=lim(x->0)【1-x^2/2!+x^4/4!-1+x^2/2!-x^4/(2!4)+o(x^5)】/x^4
=-1/12

2.取对数
lny=(2x-1)[ln(2+64^(1/x))-ln3] x替换n
罗比达法则=>极限=16

3.lim(x->0)[e^x-(1+2x)^(1/2)]/ln(1+x^2)
=lim(x->0)[e^x-(1+2x)^(1/2)]/x^2
=lim(x->0)[e^x-(1+2x)^(-1/2)]/(2x)
=lim(x->0)(1+2x)^(-1/2)* lim(x->0)[e^x(1+2x)^(1/2)-1]/(2x)
=1
4.x->0+ ,右侧极限 1 ;x->0- ,左侧极限 -1
追问
第二题我就是不会用罗比达法则 怎么用的 能不能详细点?
追答
lim(x->∞)lny=
.lim(x->∞)(2x-1)[ln(2+64^(1/x))-ln3]
=.lim(x->∞)[ln(2+64^(1/x))-ln3]/[1/(2x-1)]
=lim(x->∞)【[64^(1/x)ln(64)]/[2+64^(1/x)]】.lim(x->∞) 【(-1/x^2)/[-2/(2x-1)^2]】
=ln(64)/3 * 2
=ln(16)
原式=16(实际解题中还可以把指数上的2,-1放到一边,就更简单)
平实且勤快丶饼子2576
2012-05-05 · TA获得超过6.6万个赞
知道大有可为答主
回答量:5.4万
采纳率:0%
帮助的人:4247万
展开全部
我看不懂啊!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式