如图,已知反比例函数y=k1/x的图像与一次函数y=k2x+b的图象交于A、B两点,A(2,n),B(-1,-2)。
(1)求反比例函数和一次函数关系式。(2)在直线AB上是否存在一点P,使△APO∽△AOB?若存在,求出P的坐标,若不存在请说明理由。...
(1)求反比例函数和一次函数关系式。
(2)在直线AB上是否存在一点P,使△APO∽△AOB?若存在,求出P的坐标,若不存在请说明理由。 展开
(2)在直线AB上是否存在一点P,使△APO∽△AOB?若存在,求出P的坐标,若不存在请说明理由。 展开
展开全部
解:1,因为A,B是y=k1/x上的点,所以2n=2,解得n=1.所以A(2,1)。用待定系数法解得,y=2/x,y==x-1.。 2,设P(x,x-1),因为OA=OB=根5,AB=3根2,若△APO∽△AOB,则AO/AB=AP/AO,即AP=AO²/AB=5根2/6.。 由两点距离公式得;2(2-x)²=25/18,所以(2-x)=5/6 ,或(2-x)=-5/6,即x=7/6,或x=17/6. 所以P(7/6,1/6),或P(17/6,11/6)。
展开全部
解:
(1)
把x=-1,y=-2代入y1=k1/x
则k1=2,
∴y1=2/x
令x=2,y=1
∴A(2,1)n=1
把x=-1,y=-2 x=2,y=1代入y2=k2x+b
则k2=1,b=-1
∴y2=x-1
(2)
设y2与x轴的交点是L
A纵坐标yA,B纵坐标yB(正式吧..每次思路就那么点..写出来一段)
∴S△APB=S△APL+S△BPL
令y2=0 x=1
∴L(1,0)
∴6=LP·yA/2+LP·yB/2
∴12=LP(yA+yB)
∵yA=1,绝对值yB=2
∴12=3LP
∴LP=4
∵L(1,0)
∴OL=1
∴OP=4+1=5
∴P(5,0)
这是P在x轴正半轴时
(1)
把x=-1,y=-2代入y1=k1/x
则k1=2,
∴y1=2/x
令x=2,y=1
∴A(2,1)n=1
把x=-1,y=-2 x=2,y=1代入y2=k2x+b
则k2=1,b=-1
∴y2=x-1
(2)
设y2与x轴的交点是L
A纵坐标yA,B纵坐标yB(正式吧..每次思路就那么点..写出来一段)
∴S△APB=S△APL+S△BPL
令y2=0 x=1
∴L(1,0)
∴6=LP·yA/2+LP·yB/2
∴12=LP(yA+yB)
∵yA=1,绝对值yB=2
∴12=3LP
∴LP=4
∵L(1,0)
∴OL=1
∴OP=4+1=5
∴P(5,0)
这是P在x轴正半轴时
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为比例函数过A、B 点所以可以求出k1=2: n=1
同时,一次函数也过A、B 点所以可以求出k2=1: b=-1
所以:y=2/x:y=x-1
同时,一次函数也过A、B 点所以可以求出k2=1: b=-1
所以:y=2/x:y=x-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询