已知函数f(x)=1/3x^3+ax^2+bx (a,b∈R) 在x= -1 时取得极值
1个回答
展开全部
(1)f'(x)=x²+ax+b
∴f'(-1)=1-a+b=0
∴b=a-1
(2)由(1)知b=a-1
∴f'(x)=x²+ax+a-1=[x-(a-1)](x-1)
令f'(x)=0,则x=a-1或x=1
①当a-1=1即a=2时
f'(x)=[x-(a-1)](x-1)≥0恒成立
∴f(x)在R上递增
②当a-1>1即a>2时
令f'(x)>0,则x<1或x>a-1,f(x)在(-∞,1),(a-1,+∞)上递增
令f'(x)<0,则1<x<a-1,f(x)在(1,a-1)上递减
③当a-1<1即a<2时
令f'(x)>0,则x<a-1或x>1,f(x)在(-∞,a-1),(1,+∞)上递增
令f'(x)<0,则a-1<x<1,f(x)在(a-1,1)上减
综上所述,①当a=2时,f(x)在R上递增
②当a>2时,f(x)在(-∞,1),(a-1,+∞)上递增,在(1,a-1)上递减
③当a<2时,f(x)在(-∞,a-1),(1,+∞)上递增,在(a-1,1)上减
∴f'(-1)=1-a+b=0
∴b=a-1
(2)由(1)知b=a-1
∴f'(x)=x²+ax+a-1=[x-(a-1)](x-1)
令f'(x)=0,则x=a-1或x=1
①当a-1=1即a=2时
f'(x)=[x-(a-1)](x-1)≥0恒成立
∴f(x)在R上递增
②当a-1>1即a>2时
令f'(x)>0,则x<1或x>a-1,f(x)在(-∞,1),(a-1,+∞)上递增
令f'(x)<0,则1<x<a-1,f(x)在(1,a-1)上递减
③当a-1<1即a<2时
令f'(x)>0,则x<a-1或x>1,f(x)在(-∞,a-1),(1,+∞)上递增
令f'(x)<0,则a-1<x<1,f(x)在(a-1,1)上减
综上所述,①当a=2时,f(x)在R上递增
②当a>2时,f(x)在(-∞,1),(a-1,+∞)上递增,在(1,a-1)上递减
③当a<2时,f(x)在(-∞,a-1),(1,+∞)上递增,在(a-1,1)上减
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询