如图,在Rt△ABC中∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置
如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D、P分别是AC、BC的中点,△ADE是等腰三角形,∠AED=90°,连接BE、EC.判断线段BE和EC的关系,...
如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D、P分别是AC、BC的中点,△ADE是等腰三角形,∠AED=90°,连接BE、EC.判断线段BE和EC的关系,并证明你的结论.急急急急急!
不要复制的
如图,在Rt△ABC中∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,是三角板斜边的两个端点分别与A、D重合,连结BE、EC,猜想BE和EC的关系,并说明理由 展开
不要复制的
如图,在Rt△ABC中∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,是三角板斜边的两个端点分别与A、D重合,连结BE、EC,猜想BE和EC的关系,并说明理由 展开
10个回答
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
∴BE=EC且BE⊥EC
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
∴BE=EC且BE⊥EC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询