如图,在Rt△ABC中∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置

如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D、P分别是AC、BC的中点,△ADE是等腰三角形,∠AED=90°,连接BE、EC.判断线段BE和EC的关系,... 如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D、P分别是AC、BC的中点,△ADE是等腰三角形,∠AED=90°,连接BE、EC.判断线段BE和EC的关系,并证明你的结论.急急急急急!
不要复制的
如图,在Rt△ABC中∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,是三角板斜边的两个端点分别与A、D重合,连结BE、EC,猜想BE和EC的关系,并说明理由
展开
海语天风001
高赞答主

推荐于2016-12-01 · 你的赞同是对我最大的认可哦
知道大有可为答主
回答量:1.3万
采纳率:100%
帮助的人:8390万
展开全部
BE=CE,BE⊥CE
证明:
∵D是AC的中点
∴AC=2CD
∵AC=2AB
∴CD=AB
∵AE=ED,∠AED=90
∴∠EAD=∠EDA=45
∴∠EDC=180-∠EDA=135
∵∠BAC=90
∴∠BAE=∠BAC+∠EAD=135
∴∠BAE=∠EDC
∴△BAE≌△CDE (ASA)
∴BE=CE,∠DEC=∠AEB
∵∠AEB+∠BED=90
∴∠CED+∠BED=90
∴∠BEC=90
∴BE⊥CE
WangShuiqing
2014-02-06 · TA获得超过1.4万个赞
知道大有可为答主
回答量:1973
采纳率:100%
帮助的人:726万
展开全部

线段BE和EC的数量 关系BE=EC  , 位置关系BE⊥EC。

证明:如图,∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,(SAS)
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.

综上BE=EC,BE⊥EC。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
黄英132
2013-08-07
知道答主
回答量:19
采纳率:0%
帮助的人:7.5万
展开全部

BE=CE,BE⊥CE
证明:
∵D是AC的中点
∴AC=2CD
∵AC=2AB
∴CD=AB
∵AE=ED,∠AED=90
∴∠EAD=∠EDA=45
∴∠EDC=180-∠EDA=135
∵∠BAC=90
∴∠BAE=∠BAC+∠EAD=135
∴∠BAE=∠EDC
∴△BAE≌△CDE  (ASA)
∴BE=CE,∠DEC=∠AEB
∵∠AEB+∠BED=90
∴∠CED+∠BED=90
∴∠BEC=90
∴BE⊥CE

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
jingsiii
2012-05-16 · TA获得超过648个赞
知道答主
回答量:121
采纳率:0%
帮助的人:78.2万
展开全部
证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
冷熙祎08W
2012-05-17 · TA获得超过273个赞
知道答主
回答量:103
采纳率:0%
帮助的人:43.1万
展开全部
证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
∴BE=EC且BE⊥EC
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式