高分求高手解答一个三角函数题

cosA×cosB+sinA×sinB/cos(n×A)=cosC,B、C、n已知,求sinA。回3楼,题目是没错的这个问题难就难在后面的cosnA,不过可以用积分把他把... cosA×cosB+sinA×sinB/cos(n×A)=cosC,
B、C、n已知,求sinA。
回3楼,题目是没错的
这个问题难就难在后面的cosnA,不过可以用积分把他把换算成cosA的函数,但全是空话,毕业多年了,一些公式都忘了,特别是工作了没做涉及到这方面的知识,已经都不会了,高分希望高手能帮我解答。
展开
854032295
2008-01-02 · TA获得超过1412个赞
知道答主
回答量:199
采纳率:0%
帮助的人:91.2万
展开全部
为楼主说几句吧,这体粗看之下颇为简单,但实际情况并不是这样的
cosA×cosB+sinA×sinB/cos(n×A)=cosC
设cosC=c,,我只会解n=1的情况,答案也很麻烦,推荐一种叫Mathematica的软件,n=1的平庸解的结果是-ArcCos[Sec[
b] (c/2 - (c Tan[
b])/(2 \[Sqrt](-(2/3) Sec[
b]^2 (c^2 - 2 Cos[b]^2 + Sin[b]^2) + (2^(1/3)
Sec[b]^2 (c^4 - 16 c^2 Cos[b]^2 + 16 Cos[b]^4 +
2 c^2 Sin[b]^2 + 8 Cos[b]^2 Sin[b]^2 +
Sin[b]^4))/(3 (2 c^6 + 60 c^4 Cos[b]^2 -
192 c^2 Cos[b]^4 + 128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3)) + (1/(
3 2^(1/3)))
Sec[b]^2 (2 c^6 + 60 c^4 Cos[b]^2 - 192 c^2 Cos[b]^4 +
128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3) + Tan[b]^2)) -
1/(2 c)Cos[
b]^2 \[Sqrt](-(2/3) Sec[
b]^2 (c^2 - 2 Cos[b]^2 + Sin[b]^2) + (2^(1/3)
Sec[b]^2 (c^4 - 16 c^2 Cos[b]^2 + 16 Cos[b]^4 +
2 c^2 Sin[b]^2 + 8 Cos[b]^2 Sin[b]^2 +
Sin[b]^4))/(3 (2 c^6 + 60 c^4 Cos[b]^2 -
192 c^2 Cos[b]^4 + 128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3)) + (1/(3 2^(1/3)))
Sec[b]^2 (2 c^6 + 60 c^4 Cos[b]^2 - 192 c^2 Cos[b]^4 +
128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +

2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3) +
Tan[b]^2) \[Sqrt](-(4/3) Sec[
b]^2 (c^2 - 2 Cos[b]^2 + Sin[b]^2) - (2^(1/3)
Sec[b]^2 (c^4 - 16 c^2 Cos[b]^2 + 16 Cos[b]^4 +
2 c^2 Sin[b]^2 + 8 Cos[b]^2 Sin[b]^2 +
Sin[b]^4))/(3 (2 c^6 + 60 c^4 Cos[b]^2 -
192 c^2 Cos[b]^4 + 128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3)) - (1/(3 2^(1/3)))
Sec[b]^2 (2 c^6 + 60 c^4 Cos[b]^2 - 192 c^2 Cos[b]^4 +
128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3) +
2 Tan[b]^2 - (-16 Tan[b] -
8 Sec[b]^2 (c^2 - 2 Cos[b]^2 + Sin[b]^2) Tan[b] +
8 Tan[b]^3)/(4 \[Sqrt](-(2/3) Sec[
b]^2 (c^2 - 2 Cos[b]^2 + Sin[b]^2) + (2^(1/3)
Sec[b]^2 (c^4 - 16 c^2 Cos[b]^2 + 16 Cos[b]^4 +
2 c^2 Sin[b]^2 + 8 Cos[b]^2 Sin[b]^2 +
Sin[b]^4))/(3 (2 c^6 + 60 c^4 Cos[b]^2 -
192 c^2 Cos[b]^4 + 128 Cos[b]^6 +
6 c^4 Sin[b]^2 - 24 c^2 Cos[b]^2 Sin[b]^2 +
96 Cos[b]^4 Sin[b]^2 + 6 c^2 Sin[b]^4 +
24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3)) + (1/(
3 2^(1/3)))
Sec[b]^2 (2 c^6 + 60 c^4 Cos[b]^2 - 192 c^2 Cos[b]^4 +
128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3) + Tan[b]^2))))
这是高几的题呀?好难啊!
顺便说一下
qq7936114 - 魔法学徒 一级
这位同学,题没那么简单,是你想得太简单了
一个未知数就求不出来吗?
cosA×cosB+sinA×sinB/cos(n×A)=cosC,
B、C、n已知,求sinA。

B、C、n已知则cosB、sinB、cosC是常量了
还有什么不好解?
现在的学生简单的问题都来网上了。够呛
JuanRequelme
2007-12-20 · TA获得超过304个赞
知道小有建树答主
回答量:223
采纳率:0%
帮助的人:180万
展开全部
为楼主说几句吧,这体粗看之下颇为简单,但实际情况并不是这样的
cosA×cosB+sinA×sinB/cos(n×A)=cosC
设cosC=c,,我只会解n=1的情况,答案也很麻烦,推荐一种叫Mathematica的软件,n=1的平庸解的结果是-ArcCos[Sec[
b] (c/2 - (c Tan[
b])/(2 \[Sqrt](-(2/3) Sec[
b]^2 (c^2 - 2 Cos[b]^2 + Sin[b]^2) + (2^(1/3)
Sec[b]^2 (c^4 - 16 c^2 Cos[b]^2 + 16 Cos[b]^4 +
2 c^2 Sin[b]^2 + 8 Cos[b]^2 Sin[b]^2 +
Sin[b]^4))/(3 (2 c^6 + 60 c^4 Cos[b]^2 -
192 c^2 Cos[b]^4 + 128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3)) + (1/(
3 2^(1/3)))
Sec[b]^2 (2 c^6 + 60 c^4 Cos[b]^2 - 192 c^2 Cos[b]^4 +
128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3) + Tan[b]^2)) -
1/(2 c)Cos[
b]^2 \[Sqrt](-(2/3) Sec[
b]^2 (c^2 - 2 Cos[b]^2 + Sin[b]^2) + (2^(1/3)
Sec[b]^2 (c^4 - 16 c^2 Cos[b]^2 + 16 Cos[b]^4 +
2 c^2 Sin[b]^2 + 8 Cos[b]^2 Sin[b]^2 +
Sin[b]^4))/(3 (2 c^6 + 60 c^4 Cos[b]^2 -
192 c^2 Cos[b]^4 + 128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3)) + (1/(3 2^(1/3)))
Sec[b]^2 (2 c^6 + 60 c^4 Cos[b]^2 - 192 c^2 Cos[b]^4 +
128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +

2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3) +
Tan[b]^2) \[Sqrt](-(4/3) Sec[
b]^2 (c^2 - 2 Cos[b]^2 + Sin[b]^2) - (2^(1/3)
Sec[b]^2 (c^4 - 16 c^2 Cos[b]^2 + 16 Cos[b]^4 +
2 c^2 Sin[b]^2 + 8 Cos[b]^2 Sin[b]^2 +
Sin[b]^4))/(3 (2 c^6 + 60 c^4 Cos[b]^2 -
192 c^2 Cos[b]^4 + 128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3)) - (1/(3 2^(1/3)))
Sec[b]^2 (2 c^6 + 60 c^4 Cos[b]^2 - 192 c^2 Cos[b]^4 +
128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3) +
2 Tan[b]^2 - (-16 Tan[b] -
8 Sec[b]^2 (c^2 - 2 Cos[b]^2 + Sin[b]^2) Tan[b] +
8 Tan[b]^3)/(4 \[Sqrt](-(2/3) Sec[
b]^2 (c^2 - 2 Cos[b]^2 + Sin[b]^2) + (2^(1/3)
Sec[b]^2 (c^4 - 16 c^2 Cos[b]^2 + 16 Cos[b]^4 +
2 c^2 Sin[b]^2 + 8 Cos[b]^2 Sin[b]^2 +
Sin[b]^4))/(3 (2 c^6 + 60 c^4 Cos[b]^2 -
192 c^2 Cos[b]^4 + 128 Cos[b]^6 +
6 c^4 Sin[b]^2 - 24 c^2 Cos[b]^2 Sin[b]^2 +
96 Cos[b]^4 Sin[b]^2 + 6 c^2 Sin[b]^4 +
24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3)) + (1/(
3 2^(1/3)))
Sec[b]^2 (2 c^6 + 60 c^4 Cos[b]^2 - 192 c^2 Cos[b]^4 +
128 Cos[b]^6 + 6 c^4 Sin[b]^2 -
24 c^2 Cos[b]^2 Sin[b]^2 + 96 Cos[b]^4 Sin[b]^2 +
6 c^2 Sin[b]^4 + 24 Cos[b]^2 Sin[b]^4 +
2 Sin[b]^6 + \[Sqrt](432 c^10 Cos[b]^2 -
432 c^8 Cos[b]^4 + 1296 c^8 Cos[b]^2 Sin[b]^2 -
8640 c^6 Cos[b]^4 Sin[b]^2 +
6912 c^4 Cos[b]^6 Sin[b]^2 +
1296 c^6 Cos[b]^2 Sin[b]^4 +
3456 c^4 Cos[b]^4 Sin[b]^4 +
432 c^4 Cos[b]^2 Sin[b]^6))^(1/3) + Tan[b]^2))))
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
陨洞1
2007-12-20
知道答主
回答量:29
采纳率:0%
帮助的人:16.4万
展开全部
B、C、n已知则cosB、sinB、cosC是常量了
(cosA)^2 =1-(sinA)^2 削掉 cosA 解即可
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ε詠遠Ю泪ξ
2007-12-20 · 超过20用户采纳过TA的回答
知道答主
回答量:56
采纳率:0%
帮助的人:0
展开全部
题目是(cosA×cosB+sinA×sinB)/cos(n×A)=cosC 的话还能帮你化简出来:
A=(1/n)*arcsin[(tanc)^2/(n^2-1)]

如果没有括号的话就比较麻烦了,特别是那个cos(n*A)不太好处理```
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
guweirun
2008-01-04 · TA获得超过392个赞
知道小有建树答主
回答量:218
采纳率:0%
帮助的人:161万
展开全部
好的,来踩一下,顺便提醒一下某些人,回帖时不要复制别人的帖,上次一道100分的高分问题,我写了很大的篇幅第一个答了出来,结果楼下的一个人大量copy我的答案,楼主一时眼花,错把分给了他,事后楼主发邮件给我表示了深深的歉意,但也无济于事了,希望网民的素质能普遍提高,不要再发生这种不愉快的事了,提醒我的楼上的朋友注意一下,不要为了刷分,干copy这种缺德事,这样下去会违犯知识产权保护法的!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(18)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式