
已知cos(π/4+x)=3/5,且7π/12<x<7π/4,求(2sin^x+sin2x)/1-tanx.
1个回答
展开全部
17π/12<x<7π/4,得5π/3<x+π/4<2π
cos(x-π/4)=cos[(x+π/4)-π/2]=sin(x+π/4)=-√[1-cos²(x+π/4)]=-√[1-(3/5)²]=-4/5
sin(2x)=-cos(2x+π/2)=-cos[2(x+π/4)]=1-2cos²(x+π/4)=1-2•(3/5)²=7/25
[sin(2x)+2sin²x]/(1-tanx)
=2(sinxcosx+sin²x)/(1-sinx/cosx)
=2(cosx+sinx)/(1/sinx-1/cosx)
=2(cosx+sinx)sinxcosx/(cosx-sinx)
=cos(x-π/4)sin(2x)/cos(x+π/4)
=-4/5•7/25/(3/5)
=-28/75
cos(x-π/4)=cos[(x+π/4)-π/2]=sin(x+π/4)=-√[1-cos²(x+π/4)]=-√[1-(3/5)²]=-4/5
sin(2x)=-cos(2x+π/2)=-cos[2(x+π/4)]=1-2cos²(x+π/4)=1-2•(3/5)²=7/25
[sin(2x)+2sin²x]/(1-tanx)
=2(sinxcosx+sin²x)/(1-sinx/cosx)
=2(cosx+sinx)/(1/sinx-1/cosx)
=2(cosx+sinx)sinxcosx/(cosx-sinx)
=cos(x-π/4)sin(2x)/cos(x+π/4)
=-4/5•7/25/(3/5)
=-28/75
追问
是7π,怎么17π也对
追答
因7π/12<x<7π/4,所以5π/6<π/4+x<2π
因为cos(π/4+x)=3/5 >0
所以tan(π/4+x)=-4/5
sin2x=-cos(2x+π/2)=1-2[cos(π/4+x)]^2=7/25
原式=sin2x(1+tanx)/(1-tanx)=sin2x×tan(π/4+x)
=(7/25)×(-4/5)=-28/125
参考资料: http://zhidao.baidu.com/question/212048960.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询