问两道初中数学题:要详细解题步骤 急用。。。。。。

1.如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证△ABC∽△ADE和△ABD∽ACE.2.如图,△ABC中,CD⊥AB垂足为D,CD&... 1.如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.
(1)求证△ABC∽△ADE和△ABD∽ACE.
2.如图,△ABC中,CD⊥AB垂足为D, CD²=AD.BD ,求证△ABC是直角三角形。
展开
脆性
2012-05-07 · 超过18用户采纳过TA的回答
知道答主
回答量:56
采纳率:33%
帮助的人:35.6万
展开全部
1
因为,∠BAD=∠CAE 所以∠BAC=∠EAD=∠BAD+∠DAC,又因为∠ABC=∠ADE所以△ABC∽△ADE
由△ABC∽△ADE 得AD/AB=AE/AC 所以AD/AE=AB/AC 且他们夹角相等∠BAD=∠CAE,
所以△ABD∽ACE
2
∵CD²=AD.BD
∴CD:AD=BD:CD
所以△ACD∽△CBD∴∠CAB=∠BCD
∵∠CAB+∠ACD=90°
即∠BCD+∠ACD=90°
∴∠ACB=90°
∴△ABC是直角三角形
王之一家
2012-05-06 · TA获得超过621个赞
知道小有建树答主
回答量:296
采纳率:0%
帮助的人:126万
展开全部
因为,∠BAD=∠CAE 所以∠bac=∠ead ,又因为∠ABC=∠ADE所以△ABC∽△ADE
由上得ad比ab等于ae比ac 在转化得ad比ae=ab比 ac 且他们夹角相等 所以△ABD∽ACE
∵CD²=AD.BD
∴CD:AD=BD:CD
所以△ACD∽△CBD∴∠CAB=∠BCD
∵∠CAB+∠ACD=90°
即∠BCD+∠ACD=90°
∴∠ACB=90°
∴△ABC是直角三角形
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zhy9602
2012-05-07
知道答主
回答量:5
采纳率:0%
帮助的人:6.1万
展开全部
1.证明:∵∠BAD=∠CAE
∴ ∠BAD+∠DAC=∠CAE+∠∠DAC即
     ∠BAC=∠DAE
    ∵∠ABC=∠ADE
    ∴△ABC∽△ADE
    ∴AB/AC =AC/AE
    ∵∠BAD=∠CAE
∴△ABD∽△ACE
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友a310b27
2012-05-06 · 超过11用户采纳过TA的回答
知道答主
回答量:70
采纳率:0%
帮助的人:24.4万
展开全部
(2)∵CD²=AD.BD
∴CD:AD=BD:CD
即△ACD∽△CDB
∴∠CAB=∠BCD
∵∠CAB+∠ACD=90°
即∠BCD+∠ACD=90°
∴∠ACB=90°
∴△ABC是直角三角形
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式