展开全部
已知x²+y²-8x-10y+41=0,求y/(x²-xy)+x/(y²-xy) 的值
解:x²+y²-8x-10y+41=(x-4)²-16+(y-5)²-25+41=(x-4)²+(y-5)²=0;故x=4,y=5;
∴y/(x²-xy)+x/(y²-xy)=y/[x(x-y)]+x/[y(y-x)]=-y/[x(y-x)]+x/[y(y-x)]=[1/(y-x)][(x/y)-(y/x)]=4/5-5/4=-9/20
解:x²+y²-8x-10y+41=(x-4)²-16+(y-5)²-25+41=(x-4)²+(y-5)²=0;故x=4,y=5;
∴y/(x²-xy)+x/(y²-xy)=y/[x(x-y)]+x/[y(y-x)]=-y/[x(y-x)]+x/[y(y-x)]=[1/(y-x)][(x/y)-(y/x)]=4/5-5/4=-9/20
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询