展开全部
解答:
将△ACM顺时针旋转90°到△BCD的位置,
∴△ACM≌△BCD,
∴AM=BD,∠ACM=∠BCD,而∠MCN=45°,
∴∠DCN=45°,CM=CD,
∴△MCN≌△DCN,
∴MN=DN,
又∠A=∠DBC=45°,∴∠NBD=90°,
∴在直角△DBN中,
由勾股定理得:DN²=BD²+BN²,
∴MN²=AM²+BN²。
将△ACM顺时针旋转90°到△BCD的位置,
∴△ACM≌△BCD,
∴AM=BD,∠ACM=∠BCD,而∠MCN=45°,
∴∠DCN=45°,CM=CD,
∴△MCN≌△DCN,
∴MN=DN,
又∠A=∠DBC=45°,∴∠NBD=90°,
∴在直角△DBN中,
由勾股定理得:DN²=BD²+BN²,
∴MN²=AM²+BN²。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证:∵△ABC是等腰直角
∴CB=CA,∠B=∠CAB=45°
将△CBN绕C沿逆时针方向旋转90度,使CB与CA重合。得到△CAN′≌△CBN。
∴BN=AN′ ∠BCN=∠N′CA
∴∠B=∠CAN′
∵∠B=∠CAB=45°
∴∠CAN′+∠CAB=∠N′AM=90°
∴△N′AM是直角三角形
∵∠ACM+∠BCN=90°-∠MCN=90°-45°=45°
∠ACM+∠N′CA=∠ACM+∠BCN
即∠N′CM=∠MCN
在△N′CM与△MCN中
∵CN=CN′,CM=CM,∠N′CM=∠MCN
∴△N′CM≌△MCN(SAS)
∴N′M=MN
∵△N′AM是直角三角形
∴MN′²=AM²+AN′²
即MN²=AM²+BN²
∴CB=CA,∠B=∠CAB=45°
将△CBN绕C沿逆时针方向旋转90度,使CB与CA重合。得到△CAN′≌△CBN。
∴BN=AN′ ∠BCN=∠N′CA
∴∠B=∠CAN′
∵∠B=∠CAB=45°
∴∠CAN′+∠CAB=∠N′AM=90°
∴△N′AM是直角三角形
∵∠ACM+∠BCN=90°-∠MCN=90°-45°=45°
∠ACM+∠N′CA=∠ACM+∠BCN
即∠N′CM=∠MCN
在△N′CM与△MCN中
∵CN=CN′,CM=CM,∠N′CM=∠MCN
∴△N′CM≌△MCN(SAS)
∴N′M=MN
∵△N′AM是直角三角形
∴MN′²=AM²+AN′²
即MN²=AM²+BN²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
把三角形ACM旋转出去,使AC与BC重合(AB重合),连接M1N
∠M1BN=45+45=90
M1B²+NB²=M1N²
再证MN=M1N
用边角边
CM=CM1 45=45 CN=CN
即可
∠M1BN=45+45=90
M1B²+NB²=M1N²
再证MN=M1N
用边角边
CM=CM1 45=45 CN=CN
即可
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询