在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图(1),根据勾股定理,则a^2+b^2=c^2。若△ABC不是直角三角形

^2的关系,并证明你的结论。... ^2的关系,并证明你的结论。 展开
 我来答
幸菜礼神意散志0I
高粉答主

2012-05-08 · 说的都是干货,快来关注
知道顶级答主
回答量:3.7万
采纳率:72%
帮助的人:1.9亿
展开全部
在任意△ABC中,设c为最大边,那么∠C就是最大角
即,∠C>∠B≥∠A
所以,∠A+∠B+∠C<∠C+∠C+∠C=3∠C
又,在三角形ABC中,∠A+∠B+∠C=180°
所以:3∠C>180°
即:60°<∠C<180°,且∠C≠90°……………………(1)
而,在△ABC中,根据余弦定理有:
c^2=a^2+b^2-2abcosC………………………………………(2)
所以,由(1)知,当60°<∠C<90°时,cosC>0
那么,由(2)知道:
c^2<a^2+b^2
当90°<∠C<180°时,cosC<0
那么,由(2)知道:
c^2>a^2+b^2
综上:
当c为最大边时:
1)若△ABC为锐角三角形,那么就有:c^2<a^2+b^2
2)若△ABC为钝角三角形,那么就有:c^2>a^2+b^2
当然,
3)若△ABC为直角三角形,那么就有:c^2=a^2+b^2
当△ABC为锐角三角形时,
作CD⊥AB,垂足D,设AD=m,则BD=c-m
根据勾股定理有:
b²-m²=CD²,(a-m)²+CD²=c²
即(a-m)²+b²-m²=c²
a²-2am+b²=c²
a²+b²-c²=2am>0(a,m都是正数)
所以a²+b²>c²
若△ABC为钝角三角形,
b²-m²=CD²,(a+m)²+CD²=c²
a²+2am+b²=c²
c²-(a²+b²)=2am>0
所以c²>a²+b²
t782028821
2012-05-08 · TA获得超过1.2万个赞
知道大有可为答主
回答量:1417
采纳率:0%
帮助的人:1823万
展开全部
若∠C<90°,作AH⊥BC,垂足为H
则a^2+b^2=(BH+CH)^2+AH^2+CH^2=AH^2+BH^2+2BH*CH+2CH^2=c^2+2CH(BH+CH)>c^2
(右边的2BH*CH+2CH^2化成什么样不重要,重要的是由此得出a^2+b^2>c^2)
若∠C>90°,作AH⊥BC,垂足为H
则a^2+b^2=BC^2+CH^2+AH^2=AH^2+(BC+CH)^2-2BC*CH<AH^2+BH^2=c^2
∴a^2+b^2<c^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
景天杜若
2012-05-08
知道答主
回答量:9
采纳率:0%
帮助的人:4万
展开全部
a2+b2>c2则是锐角,小于的话C为钝角
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
czy天魔降伏
2012-12-18 · TA获得超过470个赞
知道答主
回答量:170
采纳率:0%
帮助的人:38.9万
展开全部
以后
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式