如图,在△ABC中,AD是∠BAC的角平分线,E、F分别是AB、AC上的点,且∠AED+∠AFD=180°.
若把条件∠ADE+∠AFD=180°换成DE=DF,问∠AED+∠AFD=180°是否成立??说明理由。求解啊2点之前求解啊要过程我是初一的...
若把条件∠ADE+∠AFD=180°换成DE=DF,问∠AED+∠AFD=180°是否成立??说明理由。 求解啊 2点之前求解啊 要过程 我是初一的
展开
2个回答
展开全部
证明:作DG⊥AC,DH⊥AB,垂足分别是E、F.
∵AD是∠BAC的角平分线
DG⊥AC,DH⊥AB
∴DE=DF
∵∠AED+∠AFD=180°.且∠AED+∠HED=180°.
∴∠HED=∠AFD
∵DG⊥AC,DH⊥AB,
∴∠EHD=∠DGF=90°
∴⊿DHE≌⊿DGF
∴DE=DF
(2)∵DG⊥AC,DH⊥AB,
∴∠EHD=∠DGF=90°
∵AD是∠BAC的角平分线
DG⊥AC,DH⊥AB
∴DE=DF
∴RT⊿DEH≌RT⊿DGF
∴∠DEH=∠AFD
又∵∠AED+∠DEH=180
∴∠AED+∠AFD=180°
∵AD是∠BAC的角平分线
DG⊥AC,DH⊥AB
∴DE=DF
∵∠AED+∠AFD=180°.且∠AED+∠HED=180°.
∴∠HED=∠AFD
∵DG⊥AC,DH⊥AB,
∴∠EHD=∠DGF=90°
∴⊿DHE≌⊿DGF
∴DE=DF
(2)∵DG⊥AC,DH⊥AB,
∴∠EHD=∠DGF=90°
∵AD是∠BAC的角平分线
DG⊥AC,DH⊥AB
∴DE=DF
∴RT⊿DEH≌RT⊿DGF
∴∠DEH=∠AFD
又∵∠AED+∠DEH=180
∴∠AED+∠AFD=180°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询