z=y/f(x^2+y^2)的偏导数,分别对x、y求偏导
展开全部
z = y/f(x² + y²),令u = x² + y²
∂z/∂x = y · - 1 · [∂f(u)/∂u · ∂(x² + y²)/∂x]/[f(u)]²
= - y · f'(u) · 2x/[f(u)]²
= - 2xyf'(u)/[f(u)]²
= - 2xyf'(x² + y²)/[f(x² + y²)]²
∂z/∂y = [f(u) · ∂y/∂y - y · ∂f(u)/∂u · ∂(x² + y²)/∂y]/[f(u)]²
= [f(u) - yf'(u) · 2y]/[f(u)]²
= 1/f(u) - 2y²f'(u)/[f(u)]²
= 1/f(x² + y²) - 2y²f'(x² + y²)/[f(x² + y²)]²
∂z/∂x = y · - 1 · [∂f(u)/∂u · ∂(x² + y²)/∂x]/[f(u)]²
= - y · f'(u) · 2x/[f(u)]²
= - 2xyf'(u)/[f(u)]²
= - 2xyf'(x² + y²)/[f(x² + y²)]²
∂z/∂y = [f(u) · ∂y/∂y - y · ∂f(u)/∂u · ∂(x² + y²)/∂y]/[f(u)]²
= [f(u) - yf'(u) · 2y]/[f(u)]²
= 1/f(u) - 2y²f'(u)/[f(u)]²
= 1/f(x² + y²) - 2y²f'(x² + y²)/[f(x² + y²)]²
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询