一二阶线性微分方程的通解公式

 我来答
分享社会民生
高粉答主

2019-12-19 · 热爱社会生活,了解人生百态
分享社会民生
采纳数:1248 获赞数:283275

向TA提问 私信TA
展开全部

解:齐次方程y''-2y'-3y=0的特征方程是λ-2λ-3=0,解得:

λ1=3,λ2=-1。

所以齐次方程得通解是:y=ae^(3x)+be^(-x)。

只需求其特解y*。

根据右边4e^x,可设y*=ke^x,代入左边得:ke^x-2ke^x-3ke^x=4e^x。

解得k=-1。

特征根方程r^2+r-2=0r=2,-1y=Ae^(2x)+Be^(-x)。

然后找特解待定系数,因为右端项为x^2猜测:

x^2-2ax^2+(2a-2b)x+2a+b-2c=x^2-2a=12a-2b=02a+b-2c=0a=-1/2。


扩展资料:

微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。

常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。

偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。

洋笛用3330
推荐于2017-10-16 · TA获得超过4159个赞
知道小有建树答主
回答量:195
采纳率:30%
帮助的人:27.8万
展开全部
二阶线性微分方程是指未知函数及其一阶、二阶导数都是一次方的二阶方程,简单称为二阶线性方程。二阶线性微分方程的求解方式分为两类,一是二阶线性齐次微分方程,二是线性非齐次微分方程。
如果一个二阶方程中,未知函数及其一阶、二阶导数都是一次方的,就称它为二阶线性微分方程,简单称为二阶线性方程。
二阶线性微分方程的求解方式分为两类,一是二阶线性齐次微分方程,二是线性非齐次微分方程。前者主要是采用特征方程求解,后者在对应的齐次方程的通解上加上特解即为非齐次方程的通解。齐次和非齐次的微分方程的通解都包含一切的解。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
nsjiang1
2012-05-17 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3696万
展开全部
太多啦,明天来
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式