三重积分∫∫∫z∧2dv,其中Ω是由球面x∧2+y∧2+z∧2=2z所围成的闭区域

丘冷萱Ad
2012-05-09 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3831万
展开全部
截面法:用竖坐标为z的平面截立体,得截面为Dz:x²+y²≤2z-z²
∫∫∫z²dv
=∫[0→2] (∫∫z²dxdy )dz 里面的二重积分积分区域为Dz:x²+y²≤2z-z²
=∫[0→2] z²dz ∫∫1dxdy
被积函数为1,积分结果为区域面积,Dz面积为:π(2z-z²)
=π∫[0→2] z²(2z-z²)dz
=π∫[0→2] (2z³-z⁴)dz
=π[(1/2)z⁴-(1/5)z⁵] |[0→2]
=8π/5
于山一
2012-05-09 · TA获得超过1671个赞
知道小有建树答主
回答量:1212
采纳率:0%
帮助的人:883万
展开全部
在球坐标系下解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式