分式方程无解有哪几种情况?

 我来答
帐号已注销
2018-12-22 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.6万
展开全部

分数方程无解:

1、分式方程有增根。

2、x的系数不为0。

如:

方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号。

(最简公分母:系数取最小公倍数;未知数取最高次幂;出现的因式取最高次幂。)

求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根。

验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根都是增根,则原方程无解。

如果分式本身约分了,也要代入进去检验。

在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。

扩展资料:

一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。

注意:

(1)注意去分母时,不要漏乘整式项。

(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。

(3)増根使最简公分母等于0。

(4)分式方程中,如果x为分母,则x应不等于0。

把x=a 带入最简公分母,若x=a使最简公分母为0,则a是原方程的增根。若x=a使最简公分母不为零,则a是原方程的根。

注意:可凭经验判断是否有解。若有解,带入所有分母计算:若无解,带入无解分母即可。

方程一定是等式,但等式不一定是方程。

例子:a+b=13 符合等式,有未知数。这个是等式,也是方程。

1+1=2 ,100×100=10000。这两个式子符合等式,但没有未知数,所以都不是方程。

总结:

①x²+(p+q)x+pq 型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x²+(p+q)x+pq=(x+p)(x+q)

②kx²+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么kx²+mx+n=(ax+b)(cx+d)

参考资料:百度百科——分式方程

稍微不符合
2015-06-24 · TA获得超过767个赞
知道答主
回答量:16
采纳率:0%
帮助的人:2.8万
展开全部

分数方程无解:1、分式方程有增根。

                         2、x的系数不为0。

如:

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Ralsei123
2021-05-27 · TA获得超过385个赞
知道小有建树答主
回答量:217
采纳率:100%
帮助的人:7.9万
展开全部
分数方程无解:

1、分式方程有增根。

2、x的系数不为0。

如:

方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号。

(最简公分母:系数取最小公倍数;未知数取最高次幂;出现的因式取最高次幂。)

求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根。

验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根都是增根,则原方程无解。

如果分式本身约分了,也要代入进去检验。

在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。

扩展资料:

一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。

注意:

(1)注意去分母时,不要漏乘整式项。

(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。

(3)増根使最简公分母等于0。

(4)分式方程中,如果x为分母,则x应不等于0。

把x=a 带入最简公分母,若x=a使最简公分母为0,则a是原方程的增根。若x=a使最简公分母不为零,则a是原方程的根。

注意:可凭经验判断是否有解。若有解,带入所有分母计算:若无解,带入无解分母即可。

方程一定是等式,但等式不一定是方程。

例子:a+b=13 符合等式,有未知数。这个是等式,也是方程。

1+1=2 ,100×100=10000。这两个式子符合等式,但没有未知数,所以都不是方程。

总结:

①x²+(p+q)x+pq 型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x²+(p+q)x+pq=(x+p)(x+q)

②kx²+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么kx²+mx+n=(ax+b)(cx+d)

参考资料:百度百科——分式方程
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
遵从自己的内心happyeveryday
2019-01-07
知道答主
回答量:1
采纳率:0%
帮助的人:792
展开全部
有两种情况 1.分式方程的未知数的系数为0则这个分式方程左右两边不相等,分式方程无解; 2.分式方程的最简公分母为0则分式方程无解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
关爱民886
2012-05-09 · TA获得超过149个赞
知道答主
回答量:12
采纳率:0%
帮助的人:11.9万
展开全部
有增根与无解两种情况方式方程的增根具有以下性质:1.能使分式方程的最简公分母为02.增根虽然不是原方程的根,但它却是去分母后所得整式方程的根
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(9)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式