若三角形ABC三边长为a、b、c,且S=c²-(a-b)²且a+b=2,
若三角形ABC三边长为a、b、c,面积为S,且S=c²-(a-b)²,且a+b=2,求面积S的最大值。...
若三角形ABC三边长为a、b、c,面积为S,且S=c²-(a-b)²,且a+b=2,求面积S的最大值。
展开
2个回答
展开全部
根据余弦定理:c^2=a^2+b^2-2abcosC,代入S=c²-(a-b)²得:S=2ab(1-cosC)=4ab(sinC/2)^2
因为S=1/2absinC,所以4ab(sinC/2)^2=1/2absinC,化简得:tanC/2=1/4,所以:
S=4ab(sinC/2)^2=4ab(tanC/2)^2/(1+(tanC/2)^2)=4ab(1/4)^2/(1+(1/4)^2)=4ab/17
因为a+b=2,所以b=2-a代入上式得:S=4a(2-a)/17=-4(a-1)^2/17+4/17
所以当a=1时,S取最大值4/17。
因为S=1/2absinC,所以4ab(sinC/2)^2=1/2absinC,化简得:tanC/2=1/4,所以:
S=4ab(sinC/2)^2=4ab(tanC/2)^2/(1+(tanC/2)^2)=4ab(1/4)^2/(1+(1/4)^2)=4ab/17
因为a+b=2,所以b=2-a代入上式得:S=4a(2-a)/17=-4(a-1)^2/17+4/17
所以当a=1时,S取最大值4/17。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询