如图,在直角坐标系平面中,O为原点,A(0,6),B(8,0)。点p从点A出发,以每秒2个单位长度的速度沿射线AO方向运
如图,在直角坐标系平面中,O为原点,A(0,6),B(8,0)。点p从点A出发,以每秒2个单位长度的速度沿射线AO方向运动,点Q从点B出发,以每秒1个单位长度的速度沿x轴...
如图,在直角坐标系平面中,O为原点,A(0,6),B(8,0)。点p从点A出发,以每秒2个单位长度的速度沿射线AO方向运动,点Q从点B出发,以每秒1个单位长度的速度沿x轴正方向运动。P、Q两点同时出发,设移动时间为t(t>0)秒 (1)再点p,Q运动过程中,若△POQ与△AOB相似 求t的值
展开
1个回答
展开全部
△POQ与△AOB均为直角三角形, tanOBA = OA/OB = 6/8 = 3/4
若△POQ与△AOB相似, 只需tanOQP = 3/4或tanOPQ = 3/4即可.
t时, P(0, 6 - 2t), Q(8 + t, 0)
(1) 0 < t < 3
P在OA上, OP = 6 - 2t, OQ = 8+t
tanOQP = OP/OQ = (6-2t)/(8+t) = 3/4, t= 0, 舍去
或tanOPQ = OQ/OP = (8+t)/(6-2t) = 3/4, t = -7/5 < 0, 舍去
(2) t > 3
P在x轴下方, OP = 2t - 6, OQ = 8+t
tanOQP = OP/OQ = (2t - 6)/(8+t) = 3/4, t = 48/5
或tanOPQ = OQ/OP = (8+t)/(2t - 6) = 3/4, t =25
有二解: t = 48/5或t = 25
若△POQ与△AOB相似, 只需tanOQP = 3/4或tanOPQ = 3/4即可.
t时, P(0, 6 - 2t), Q(8 + t, 0)
(1) 0 < t < 3
P在OA上, OP = 6 - 2t, OQ = 8+t
tanOQP = OP/OQ = (6-2t)/(8+t) = 3/4, t= 0, 舍去
或tanOPQ = OQ/OP = (8+t)/(6-2t) = 3/4, t = -7/5 < 0, 舍去
(2) t > 3
P在x轴下方, OP = 2t - 6, OQ = 8+t
tanOQP = OP/OQ = (2t - 6)/(8+t) = 3/4, t = 48/5
或tanOPQ = OQ/OP = (8+t)/(2t - 6) = 3/4, t =25
有二解: t = 48/5或t = 25
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询