设f(x)是定义域R上的奇函数,且对任意实数x,恒有f(x+2)=

(1)求证;f(x)是周期函数(2)当x∈【2,4】时,求f(x)的解析式(3)计算f(0)+f(1)+f(2)+......+f(2008)... (1)求证;f(x)是周期函数(2)当x∈【2,4】时,求f(x)的解析式(3)计算f(0)+f(1)+f(2)+......+f(2008) 展开
feidao2010
2012-05-11 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
补充题目:
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x属于[0,2]时,f(x)=2x-x^2
1)求证;f(x)是周期函数(2)当x∈【2,4】时,求f(x)的解析式(3)计算f(0)+f(1)+f(2)+......+f(2008)

解:
(1)由于f(x+2)=-f(x),
f[(x+2)+2]=-f(x+2)=-[-f(x)]=f(x)
则f(x+4)=f(x),f(x)是以4为周期的周期函数

(2)由题设我们知道x∈[0,2]时,f(x)=2x-x^2
x∈[2,4]时,4-x∈[0,2],
f(x)=-f(-x)=-f(4-x)=-[2(4-x)-(4-x)^2]
f(x)=-(8-2x-16+8x-x^2)
f(x)=x^2-6x+8

(3)由x∈[0,2]时,f(x)=2x-x^2,
得到f(0)=f(4)=f(8)=……=0
f(1)=f(5)=f(9)=……=1
由x∈[2,4]时,f(x)=x^2-6x+8
得到f(2)=f(6)=f(10)=……0
f(3)=f(7)=f(11)=……-1
f(0)+f(1)+f(2)+……+f(2008)总共是2009个值相加,每四个的和为0,所以后2008个的和都为0,所所求=f(0)=0
所以f(0)+f(1)+f(2)+……+f(2008)=0
huangqi529
2012-05-11 · TA获得超过367个赞
知道答主
回答量:91
采纳率:0%
帮助的人:24.6万
展开全部
1)由于f(x+2)=-f(x),
f[(x+2)+2]=-f(x+2)=-[-f(x)]=f(x)
则f(x+4)=f(x),f(x)是以4为周期的周期函数

(2)由题设我们知道x∈[0,2]时,f(x)=2x-x^2
x∈[2,4]时,4-x∈[0,2],
f(x)=-f(-x)=-f(4-x)=-[2(4-x)-(4-x)^2]
f(x)=-(8-2x-16+8x-x^2)
f(x)=x^2-6x+8

(3)由x∈[0,2]时,f(x)=2x-x^2,
得到f(0)=f(4)=f(8)=……=0
f(1)=f(5)=f(9)=……=1
由x∈[2,4]时,f(x)=x^2-6x+8
得到f(2)=f(6)=f(10)=……0
f(3)=f(7)=f(11)=……-1
f(0)+f(1)+f(2)+……+f(2008)总共是2009个值相加,每四个的和为0,所以后2008个的和都为0,所所求=f(0)=0
所以f(0)+f(1)+f(2)+……+f(2008)=0 赞同

采纳吧,我只是个学童
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友de12e05
2012-05-10 · TA获得超过149个赞
知道答主
回答量:170
采纳率:0%
帮助的人:31.8万
展开全部
条件没全
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式