求定积分∫(0-1) 1/1+x^4dx

淡淡幽情KK
2012-05-12 · TA获得超过6332个赞
知道大有可为答主
回答量:1969
采纳率:0%
帮助的人:974万
展开全部
先算不定积分∫(x²+1)/(x^4+1)dx
分子分母同时除以x²得:
原式=∫(1+1/x²)/(x²+1/x²)dx
=∫d(x-1/x)/[(x-1/x)²+2]
=1/√2 arctan[(x-1/x)/√2]+C
=1/√2 arctan[(x²-1)/√2x]+C
同理可解得:
不定积分∫(x²-1)/(x^4+1)dx
=1/2√2 ln|(x²-√2x+1)/(x²+√2x+1)|+C

∴不定积分∫1/(x^4+1)dx
=1/2∫[(x²+1)-(x²-1)]/(x^4+1)dx
=1/2∫(x²+1)/(x^4+1)dx-1/2∫(x²-1)/(x^4+1)dx
=1/2√2 arctan[(x²-1)/√2x]-1/4√2 ln|(x²-√2x+1)/(x²+√2x+1)|+C
再代入上下限0和1得:
原定积分=[π-ln(3-2√2)]/4√2
可能有算错的地方哈
fin3574
高粉答主

2012-05-12 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134583

向TA提问 私信TA
展开全部
∫(0→1) dx/(1 + x⁴)
= (1/2)∫(0→1) [(x² + 1) - (x² - 1)]/(1 + x⁴) dx
= (1/2)∫(0→1) (x² + 1)/(x⁴ + 1) dx - (1/2)∫(0→1) (x² - 1)/(x⁴ + 1) dx
= (1/2)∫(0→1) (1 + 1/x²)/(x² + 1/x²) dx - (1/2)∫(0→1) (1 - 1/x²)/(x² + 1/x²) dx
= (1/2)∫(0→1) d(x - 1/x)/[(x - 1/x)² + 2] - (1/2)∫(0→1) d(x + 1/x)/[(x + 1/x)² - 2]
= (1/2) · 1/√2 · arctan[(x - 1/x)/√2] - (1/2) · 1/(2√2) · ln|[(x + 1/x) - √2]/[(x + 1/x) + √2]|:(0→1)
= 1/(2√2) · arctan[x/√2 - 1/(√2x)] - 1/(4√2) · ln|(x² - √2x + 1)/(x² + √2x + 1)|:(0→1)
= 1/(2√2) · [0 - (- π/2)] - 1/(4√2) · [ln(3 - 2√2) - 0]
= [π - ln(3 - 2√2)]/(4√2)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式