1个回答
展开全部
∫∫(x^2-y^2)ds
=∫[0,π]dx∫[0,sinx](x^2-y^2)dy
=∫[0,π]x^2sinx-(1/3)sinx^3 dx
=-x^2cosx+2xsinx+2cosx-(1/9)cosx^3+(1/3)cosx |[0,π]
=π^2-2+(1/9)-1/3-2+1/9-1/3
=π^2-4-4/9
∫x^2sinxdx=-x^2cosx+2∫xcosxdx=-x^2cosx+2xsinx-2∫sinxdx=-x^2cosx+2xsinx+2cosx
∫sinx^3dx=-∫(1-cosx^2)dcosx=(1/3)cosx^3-cosx
=∫[0,π]dx∫[0,sinx](x^2-y^2)dy
=∫[0,π]x^2sinx-(1/3)sinx^3 dx
=-x^2cosx+2xsinx+2cosx-(1/9)cosx^3+(1/3)cosx |[0,π]
=π^2-2+(1/9)-1/3-2+1/9-1/3
=π^2-4-4/9
∫x^2sinxdx=-x^2cosx+2∫xcosxdx=-x^2cosx+2xsinx-2∫sinxdx=-x^2cosx+2xsinx+2cosx
∫sinx^3dx=-∫(1-cosx^2)dcosx=(1/3)cosx^3-cosx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询