计算曲面积分
∫∫(xy+yz+xz)dS,其中∑为圆锥面z=√x^2+y^2被曲面x^2+y^2=2ax所割下的部分...
∫∫(xy+yz+xz)dS,其中∑为圆锥面z=√x^2+y^2被曲面x^2+y^2=2ax所割下的部分
展开
展开全部
解:∵dS=√[1+(αz/αx)²+(αz/αy)²]dxdy
=√[1+(x/z)²+(y/z)²]dxdy
=√2dxdy
∴原式=∫<-π/2,π/2>dθ∫<0,2acosθ>(r²sinθcosθ+r²sinθ+r²cosθ)rdr (做极坐标变换)
=4a^4∫<-π/2,π/2>(sinθcosθ+sinθ+cosθ)(cosθ)^4dθ
=4a^4∫<-π/2,π/2>[sinθ(cosθ)^5+sinθ(cosθ)^4+cosθ(1-2sin²θ+(sinθ)^4)]dθ
=4a^4[(-1/6)(cosθ)^6+(-1/5)(cosθ)^5+sinθ-(2/3)sin³θ+(1/5)(sinθ)^5]│<-π/2,π/2>
=4a^4(1-2/3+1/5+1-2/3+1/5)
=(64/15)a^4。
=√[1+(x/z)²+(y/z)²]dxdy
=√2dxdy
∴原式=∫<-π/2,π/2>dθ∫<0,2acosθ>(r²sinθcosθ+r²sinθ+r²cosθ)rdr (做极坐标变换)
=4a^4∫<-π/2,π/2>(sinθcosθ+sinθ+cosθ)(cosθ)^4dθ
=4a^4∫<-π/2,π/2>[sinθ(cosθ)^5+sinθ(cosθ)^4+cosθ(1-2sin²θ+(sinθ)^4)]dθ
=4a^4[(-1/6)(cosθ)^6+(-1/5)(cosθ)^5+sinθ-(2/3)sin³θ+(1/5)(sinθ)^5]│<-π/2,π/2>
=4a^4(1-2/3+1/5+1-2/3+1/5)
=(64/15)a^4。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询