如图,平面直角坐标系中,抛物线y=-x2+3x+4与x轴交于点A、B(A在左侧),与y轴交于点C,抛物线的顶点为点M
解:(1)∵抛物线y=-x2+3x+4与x轴交于点A、B(A在左侧),
∴抛物线与x轴的交点坐标为:0=-x2+3x+4,
解得:x1=-1,x2=4,
A(-1,0)、B(4,0);
(2)连接AC并延长交抛物线的对称轴于D,
将A(-1,0),C(0,4)点的坐标代入:Y=kx+b,
b=4-k+b=0
解得:b=4,k=4,
求出直线AC解析式:y=4x+4,
将x=1.5,代入y=4x+4得,
y=10,
∴D点坐标(1.5,10)
(3)N坐标是(1.5,2.5),M坐标是(3/ 2 ,25/ 4 ),
设P(x2,-x+4),Q(x2,-x2+3x+4),
①四边形PQMN是平行四边形,此时PQ=MN,
由题意得,25 /4 -5/ 2 =(-x^2+3x+4)-(-x+4)
解得:x=2.5,x=1.5(舍去)
此时P(2.5,1.5),
②四边形PQMN是等腰梯形,此时PN=QM进一步得MG=NH(QG、PH是所添的垂线段),
从而得方25 /4 +x^2-3x-4= --x+4-5/ 2 ,
解得x=0.5,x=1.5(舍去),
此时P(0.5,3.5),
综合上述两种情况可知:当四边形PQMN满足有一组对边相等时,
P点的坐标为(2.5,1.5)或(0.5,3.5).