设M,N是椭圆x^2/9+y^2/4=1上的两点,OM⊥ON(O为坐标原点),则|OM|·|ON|的最小值
1个回答
展开全部
这题是有个结论很好用1/|OM|^2+1/|ON|^2=1/9+1/4
设M(|OM|cost,|OM|sint)
N(|ON|cos(t+π/2),|ON|sin(t+π/2))=(-|ON|sint,|ON|cost)
代入方程得到:
|OM|^2cos^2t/9+|OM|^2sin^2t/4=1得到:cos^2t/9+sin^2t/4=1/|OM|^2
同样可以得到 sin^2t/9+cos^t/4=1/|ON|^2
相加所以有:1/9+1/4=1/|OM|^2+1/|ON|^2>=2/|OM|*|ON|
所以|OM|*|ON|>=72/13
选C
望采纳~~~
设M(|OM|cost,|OM|sint)
N(|ON|cos(t+π/2),|ON|sin(t+π/2))=(-|ON|sint,|ON|cost)
代入方程得到:
|OM|^2cos^2t/9+|OM|^2sin^2t/4=1得到:cos^2t/9+sin^2t/4=1/|OM|^2
同样可以得到 sin^2t/9+cos^t/4=1/|ON|^2
相加所以有:1/9+1/4=1/|OM|^2+1/|ON|^2>=2/|OM|*|ON|
所以|OM|*|ON|>=72/13
选C
望采纳~~~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询