求过圆x∧2+y∧2+2x-4y-5=0和直线2x+y+4=0的交点且面积最小的圆的方程
展开全部
已知园圆心为(-1,2)半径为3
点到直线的距离为4/5*跟下5垂足为(-13/5,6/5)
最小圆的半径人R^2=9-16/5=29/5
最小的圆的方程(X+13/5)^2+(Y-6/5)^=29/5
即求以交点为直径的圆
将y=-2x-4代入圆:x^2+4x^2+16x+16+2x+8x+16-5=0
得:5x^2+26x+27=0
(5x+ 9)(x+3)=0
x=-9/5, -3
y=-2/5, 2
中点为(-11/10, -1/2),
d^2=(-9/5+3)^2+(-2/5-2)^2=(6/5)^2+(12/5)^2=36/5, r^2=d^2/4=9/5
故所求圆为:(x+11/10)^2+(y+1/2)^2=9/5
点到直线的距离为4/5*跟下5垂足为(-13/5,6/5)
最小圆的半径人R^2=9-16/5=29/5
最小的圆的方程(X+13/5)^2+(Y-6/5)^=29/5
即求以交点为直径的圆
将y=-2x-4代入圆:x^2+4x^2+16x+16+2x+8x+16-5=0
得:5x^2+26x+27=0
(5x+ 9)(x+3)=0
x=-9/5, -3
y=-2/5, 2
中点为(-11/10, -1/2),
d^2=(-9/5+3)^2+(-2/5-2)^2=(6/5)^2+(12/5)^2=36/5, r^2=d^2/4=9/5
故所求圆为:(x+11/10)^2+(y+1/2)^2=9/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已知园圆心为(-1,2)半径为3
点到直线的距离为4/5*跟下5垂足为(-13/5,6/5)
最小圆的半径人R^2=9-16/5=29/5
最小的圆的方程(X+13/5)^2+(Y-6/5)^=29/5
点到直线的距离为4/5*跟下5垂足为(-13/5,6/5)
最小圆的半径人R^2=9-16/5=29/5
最小的圆的方程(X+13/5)^2+(Y-6/5)^=29/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询