已知,如图在矩形ABCD中,E为AD中点,EF⊥EC交AB于F,连结FC(AB>AE)
设AB:BC=K,是否存在这样的K值,使得△AEF∽△BFC,若存在,证明你的结论并求出K的值;若不存在,说明理由。...
设AB:BC=K,是否存在这样的K值,使得△AEF∽△BFC,若存在,证明你的结论并求出K的值;若不存在,说明理由。
展开
展开全部
设AD=2x,AB=b,DG=AF=a,则FB=b-a,
∵∠GEC=90°,ED⊥CD,
∴ED2=GD•CD
∴x2=ab,
假定△AEF与△BFC相似,则有两种情况:
一是∠AFE=∠BCF;则∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况是不成立的.
二是∠AFE=∠BFC.
根据△AEF∽△BFC,
于是:AF: AE =BF :BC
即a :x =b-a :2x ,得b=3a
所以x2=ab=3a2,因此x=√3a
于是k=AB :BC =b :2x =3a :2 √3 a = √3: 2 .
∵∠GEC=90°,ED⊥CD,
∴ED2=GD•CD
∴x2=ab,
假定△AEF与△BFC相似,则有两种情况:
一是∠AFE=∠BCF;则∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况是不成立的.
二是∠AFE=∠BFC.
根据△AEF∽△BFC,
于是:AF: AE =BF :BC
即a :x =b-a :2x ,得b=3a
所以x2=ab=3a2,因此x=√3a
于是k=AB :BC =b :2x =3a :2 √3 a = √3: 2 .
GamryRaman
2023-06-12 广告
2023-06-12 广告
N沟道耗尽型MOS管工作在恒流区时,g极与d极之间的电位有固定的大小关系。这是因为当MOS管工作在恒流区时,由于源极和漏极电压相等,G极电压(即源极电压)为0,而D极电压(即漏极电压)受栅极电压控制。由于G极电压为0,因此在恒流区时,D极电...
点击进入详情页
本回答由GamryRaman提供
展开全部
解:(1)△AEF∽△ECF.证明如下:
延长FE与CD的延长线交于G,
∵E为AD的中点,AE=DE,∠AEF=∠GED,
∴Rt△AEF≌Rt△DEG.
∴EF=EG.
∵CE=CE,∠FEC=∠CEG=90°,
∴Rt△EFC≌Rt△EGC.
∴∠AFE=∠EGC=∠EFC.
又∵∠A=∠FEC=90°,
∴Rt△AEF∽Rt△ECF.
(2)设AD=2x,AB=b,DG=AF=a,则FB=b-a,
∵∠GEC=90°,ED⊥CD,
∴ED2=GD•CD
∴x2=ab,
假定△AEF与△BFC相似,则有两种情况:
一是∠AFE=∠BCF;则∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况是不成立的.
二是∠AFE=∠BFC.
根据△AEF∽△BFC,
于是:AF AE =BF BC ,即a x =b-a 2x ,得b=3a.
所以x2=ab=3a2,因此x= 3 a,
于是k=AB BC =b 2x =3a 2 3 a = 3 2 .
延长FE与CD的延长线交于G,
∵E为AD的中点,AE=DE,∠AEF=∠GED,
∴Rt△AEF≌Rt△DEG.
∴EF=EG.
∵CE=CE,∠FEC=∠CEG=90°,
∴Rt△EFC≌Rt△EGC.
∴∠AFE=∠EGC=∠EFC.
又∵∠A=∠FEC=90°,
∴Rt△AEF∽Rt△ECF.
(2)设AD=2x,AB=b,DG=AF=a,则FB=b-a,
∵∠GEC=90°,ED⊥CD,
∴ED2=GD•CD
∴x2=ab,
假定△AEF与△BFC相似,则有两种情况:
一是∠AFE=∠BCF;则∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况是不成立的.
二是∠AFE=∠BFC.
根据△AEF∽△BFC,
于是:AF AE =BF BC ,即a x =b-a 2x ,得b=3a.
所以x2=ab=3a2,因此x= 3 a,
于是k=AB BC =b 2x =3a 2 3 a = 3 2 .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
.解:(1)相似,如图2,证明:延长EF与CD的延长线交于点G.在Rt△AEF与Rt△DEG中,∵ E是AD的中点,∴ AE=ED.∠AEF=∠DEG,∴ △AFE≌△DGE.∴ △AFE=△DGE.∴ E为FG的中点.又CE⊥FG,∴ FC=GC.∴ ∠CFE=∠G.∴ ∠AFE=∠EFC.又△AEF与△EFC均为五角三角形,∴ △AEF∽△EFC.
(2)①存在.如果∠BCF=∠AEF,即k=23=BCAB时,△AEF∽△BCF.证:当23=BCAB时,3=DEDC.∴ ∠ECG=30°.∴ ∠ECG=∠ECF=∠AEF=30°,∴ ∠BCF=90°-60°=30°.又△AEF和△BCF均为直角三角形.∴ △AEF∽△BCF. ②因为EF不平行于BC,∴ ∠BCF≠∠AFE.∴ 不存在第二种相似情况.
(2)①存在.如果∠BCF=∠AEF,即k=23=BCAB时,△AEF∽△BCF.证:当23=BCAB时,3=DEDC.∴ ∠ECG=30°.∴ ∠ECG=∠ECF=∠AEF=30°,∴ ∠BCF=90°-60°=30°.又△AEF和△BCF均为直角三角形.∴ △AEF∽△BCF. ②因为EF不平行于BC,∴ ∠BCF≠∠AFE.∴ 不存在第二种相似情况.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
易得AEF和EDC相似
AF/ED=FE/EC
AE=DE
AF/AE=FE/EC
又因为有个直角
所以相似
AF/ED=FE/EC
AE=DE
AF/AE=FE/EC
又因为有个直角
所以相似
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询