已知,如图在矩形ABCD中,E为AD中点,EF⊥EC交AB于F,连结FC(AB>AE)

设AB:BC=K,是否存在这样的K值,使得△AEF∽△BFC,若存在,证明你的结论并求出K的值;若不存在,说明理由。... 设AB:BC=K,是否存在这样的K值,使得△AEF∽△BFC,若存在,证明你的结论并求出K的值;若不存在,说明理由。 展开
水碧幽兰
2012-05-13
知道答主
回答量:6
采纳率:0%
帮助的人:11.5万
展开全部
设AD=2x,AB=b,DG=AF=a,则FB=b-a,
∵∠GEC=90°,ED⊥CD,
∴ED2=GD•CD
∴x2=ab,
假定△AEF与△BFC相似,则有两种情况:
一是∠AFE=∠BCF;则∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况是不成立的.
二是∠AFE=∠BFC.
根据△AEF∽△BFC,
于是:AF: AE =BF :BC
即a :x =b-a :2x ,得b=3a
所以x2=ab=3a2,因此x=√3a
于是k=AB :BC =b :2x =3a :2 √3 a = √3: 2 .
沈溺在你的眼波
2012-07-03 · TA获得超过297个赞
知道答主
回答量:69
采纳率:0%
帮助的人:23万
展开全部
解:(1)△AEF∽△ECF.证明如下:
延长FE与CD的延长线交于G,
∵E为AD的中点,AE=DE,∠AEF=∠GED,
∴Rt△AEF≌Rt△DEG.
∴EF=EG.
∵CE=CE,∠FEC=∠CEG=90°,
∴Rt△EFC≌Rt△EGC.
∴∠AFE=∠EGC=∠EFC.
又∵∠A=∠FEC=90°,
∴Rt△AEF∽Rt△ECF.
(2)设AD=2x,AB=b,DG=AF=a,则FB=b-a,
∵∠GEC=90°,ED⊥CD,
∴ED2=GD•CD
∴x2=ab,
假定△AEF与△BFC相似,则有两种情况:
一是∠AFE=∠BCF;则∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况是不成立的.
二是∠AFE=∠BFC.
根据△AEF∽△BFC,
于是:AF AE =BF BC ,即a x =b-a 2x ,得b=3a.
所以x2=ab=3a2,因此x= 3 a,
于是k=AB BC =b 2x =3a 2 3 a = 3 2 .
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
孤酒行歌
2012-12-11 · TA获得超过584个赞
知道答主
回答量:247
采纳率:0%
帮助的人:58.9万
展开全部
.解:(1)相似,如图2,证明:延长EF与CD的延长线交于点G.在Rt△AEF与Rt△DEG中,∵ E是AD的中点,∴ AE=ED.∠AEF=∠DEG,∴ △AFE≌△DGE.∴ △AFE=△DGE.∴ E为FG的中点.又CE⊥FG,∴ FC=GC.∴ ∠CFE=∠G.∴ ∠AFE=∠EFC.又△AEF与△EFC均为五角三角形,∴ △AEF∽△EFC.
(2)①存在.如果∠BCF=∠AEF,即k=23=BCAB时,△AEF∽△BCF.证:当23=BCAB时,3=DEDC.∴ ∠ECG=30°.∴ ∠ECG=∠ECF=∠AEF=30°,∴ ∠BCF=90°-60°=30°.又△AEF和△BCF均为直角三角形.∴ △AEF∽△BCF. ②因为EF不平行于BC,∴ ∠BCF≠∠AFE.∴ 不存在第二种相似情况.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
易溶昌嘉美
2019-06-17 · TA获得超过3898个赞
知道大有可为答主
回答量:3142
采纳率:35%
帮助的人:201万
展开全部
易得AEF和EDC相似
AF/ED=FE/EC
AE=DE
AF/AE=FE/EC
又因为有个直角
所以相似
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式