已知tanθ=2,则sinθ/(sin3θ-cos3θ)=
3个回答
展开全部
tanθ=sinθ/cosθ=2
sinθ=2cosθ
sinθ/(sin^3θ-cos^3θ)
=sinθ/[(sinθ-cosθ)(sin^2θ+sinθcosθ+cos^2θ)]
=sinθ/[(sinθ-cosθ)(1+sinθcosθ)]
=sinθ/[(sinθ-cosθ)(1+sinθcosθ)]
=2cosθ/[(2cosθ-cosθ)(1+2cosθcosθ)]
=2cosθ/[cosθ(1+2cosθcosθ)]
=2/(2+2cos2θ)
=1/(1+cos2θ)
=1/[1+(1-tan^2θ)/(1+tan^2θ)]
=1/[1+(1-2^2)/(1+2^2)]
=1/[1-3/5]
=1/[2/5]
=5/2
sinθ=2cosθ
sinθ/(sin^3θ-cos^3θ)
=sinθ/[(sinθ-cosθ)(sin^2θ+sinθcosθ+cos^2θ)]
=sinθ/[(sinθ-cosθ)(1+sinθcosθ)]
=sinθ/[(sinθ-cosθ)(1+sinθcosθ)]
=2cosθ/[(2cosθ-cosθ)(1+2cosθcosθ)]
=2cosθ/[cosθ(1+2cosθcosθ)]
=2/(2+2cos2θ)
=1/(1+cos2θ)
=1/[1+(1-tan^2θ)/(1+tan^2θ)]
=1/[1+(1-2^2)/(1+2^2)]
=1/[1-3/5]
=1/[2/5]
=5/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-05-13
展开全部
sinθ/(sin3θ-cos3θ)
=sinθ/[(sinθ-cosθ)(1+sinθcosθ)]
θ在第一象限
tanθ=2
sinθ=2√5/5
cos=√5/5
sinθ/[(sinθ-cosθ)(1+sinθcosθ)]
=1/[(1-cotθ)(1+2/5)]
=1/(1/2+7/5)
=10/(5+14)
=10/19
θ在第二象限
tanθ=2
sinθ=-2√5/5
cos=-√5/5
sinθ/[(sinθ-cosθ)(1+sinθcosθ)]
=1/[(1-cotθ)(1+2/5)]
=1/(1/2+7/5)
=10/(5+14)
=10/19
=sinθ/[(sinθ-cosθ)(1+sinθcosθ)]
θ在第一象限
tanθ=2
sinθ=2√5/5
cos=√5/5
sinθ/[(sinθ-cosθ)(1+sinθcosθ)]
=1/[(1-cotθ)(1+2/5)]
=1/(1/2+7/5)
=10/(5+14)
=10/19
θ在第二象限
tanθ=2
sinθ=-2√5/5
cos=-√5/5
sinθ/[(sinθ-cosθ)(1+sinθcosθ)]
=1/[(1-cotθ)(1+2/5)]
=1/(1/2+7/5)
=10/(5+14)
=10/19
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询