已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于PB,PE交射线DC于 100
已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于PB,PE交射线DC于点E,过点E作EF垂直于AC,垂足为点F一。(1)...
已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于PB,PE交射线DC于点E,过点E作EF垂直于AC,垂足为点F
一。(1)求证:PB等于PE
(2),在点P的运动过程中,PF的长度是否发生改变?若不变,试求出这个不变的值,若变化,试说明理由。
二。当点E落在线段DC的延长线上时,请在备用图上画出符合要求的大致图形,并判断上述 一 中的结论是否仍然成立
三。在点P的运动过程中,△PEC能否为等腰三角形?如果能试求出AP
(用初二的知识点、O(∩_∩)O谢谢)
急!!!!!!!!!!!!!!!!!!!!!!!!
图 展开
一。(1)求证:PB等于PE
(2),在点P的运动过程中,PF的长度是否发生改变?若不变,试求出这个不变的值,若变化,试说明理由。
二。当点E落在线段DC的延长线上时,请在备用图上画出符合要求的大致图形,并判断上述 一 中的结论是否仍然成立
三。在点P的运动过程中,△PEC能否为等腰三角形?如果能试求出AP
(用初二的知识点、O(∩_∩)O谢谢)
急!!!!!!!!!!!!!!!!!!!!!!!!
图 展开
展开全部
一、证明:∵∠BPE=∠BCE=Rt∠,∴四边形BPCE内接于圆,
∴∠BEP=∠BCP=45°,∴∠EBP=45°,∴PB=PE;
连结BD交AC于点O,∵∠OBP+∠OPB=Rt∠,∠FPE+∠OPB=Rt∠,∴∠OBP=∠FPE,
在Rt△BOP和Rt△PFE中,∵∠BOP=∠PFE、∠OBP=∠FPE、PB=EP,
∴Rt△BOP≌Rt△PFE中,∴BO=PF,即在P的运动过程中,PF恒等于BO;
二、当E在DC延长线上时,一、中结论仍成立;如图
三、设△PEC中,CP=CE,∴∠CPE=∠CEP,
∵已证∠CPE=∠OBP,∠OBP+45°=∠ABP,
∵已证四边形BECP内接于圆,∠CEP+45°=∠CEB=∠APB,∴∠ABP=∠APB,AB=AP,
即当AP=AB时,△PEC中为等腰三角形,解毕。
展开全部
作PM⊥BC,PN⊥CD,
正方形PMCN ,
PN=PM ,
∵∠BPE=90°,
∴∠BPM+∠MPE=90°,
∵∠MPE+∠EPN=90°,
∴∠BPM=∠EPN,
∵PM⊥BC,PN⊥CD,
∴∠PMB=∠PNE=90°
△PBM≌△PEN,
PB等于PE
(2),在点P的运动过程中,PF的长度不会发生改变,
因为当P点趋向于A和c点时,很明显PF=1/2AC;因为当P点在AC的中点时F点与C点重合,P点在AC上运动时,PF的长度随着均匀改变。故得证。
二。当点E落在线段DC的延长线上时,可以判断上述 (一) 中的结论仍然成立,证明方法一样。
三。在点P的运动过程中,△PEC可以为等腰三角形
求出AP:吃完饭再来吧,,,
正方形PMCN ,
PN=PM ,
∵∠BPE=90°,
∴∠BPM+∠MPE=90°,
∵∠MPE+∠EPN=90°,
∴∠BPM=∠EPN,
∵PM⊥BC,PN⊥CD,
∴∠PMB=∠PNE=90°
△PBM≌△PEN,
PB等于PE
(2),在点P的运动过程中,PF的长度不会发生改变,
因为当P点趋向于A和c点时,很明显PF=1/2AC;因为当P点在AC的中点时F点与C点重合,P点在AC上运动时,PF的长度随着均匀改变。故得证。
二。当点E落在线段DC的延长线上时,可以判断上述 (一) 中的结论仍然成立,证明方法一样。
三。在点P的运动过程中,△PEC可以为等腰三角形
求出AP:吃完饭再来吧,,,
参考资料: http://zhidao.baidu.com/question/312514618.html
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
过点P作PM⊥AB PN⊥DE
易证△BMP≌△PNE,
设AP=X
MP=NE=√2X/2
CN=PN=MN-MP=1-√2X/2
PC=√2-X
CE=NE-CN=√2X/2-(1-√2X/2)=√2X-1
因为
△PEC为等腰三角形
所以PC=CE
所以X=1
所以AP=1
易证△BMP≌△PNE,
设AP=X
MP=NE=√2X/2
CN=PN=MN-MP=1-√2X/2
PC=√2-X
CE=NE-CN=√2X/2-(1-√2X/2)=√2X-1
因为
△PEC为等腰三角形
所以PC=CE
所以X=1
所以AP=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有图吗?
追问
嗯
追答
一、证明:∵∠BPE=∠BCE=Rt∠,∴四边形BPCE内接于圆,
∴∠BEP=∠BCP=45°,∴∠EBP=45°,∴PB=PE;
连结BD交AC于点O,∵∠OBP+∠OPB=Rt∠,∠FPE+∠OPB=Rt∠,∴∠OBP=∠FPE,
在Rt△BOP和Rt△PFE中,∵∠BOP=∠PFE、∠OBP=∠FPE、PB=EP,
∴Rt△BOP≌Rt△PFE中,∴BO=PF,即在P的运动过程中,PF恒等于BO;
二、当E在DC延长线上时,一、中结论仍成立;如图
三、设△PEC中,CP=CE,∴∠CPE=∠CEP,
∵已证∠CPE=∠OBP,∠OBP+45°=∠ABP,
∵已证四边形BECP内接于圆,∠CEP+45°=∠CEB=∠APB,∴∠ABP=∠APB,AB=AP,
即当AP=AB时,△PEC中为等腰三角形,解毕。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询