若a^2+4a+1=0且(a^4+ma^2+1)/(2a^3+ma^2+2a)=5求m的值

pseudorange
2012-05-13 · TA获得超过9.5万个赞
知道大有可为答主
回答量:2.5万
采纳率:61%
帮助的人:2.8亿
展开全部
a^2+4a+1=0
a²+1=4a
两边同除以a得:
a+1/a=4
两边平方得:
a²+1/a²=16-2=14
(a^4+ma^2+1)/(2a^3+ma^2+2a)=5
分子分母同除以x²得:
(a²+1/a²+4m)/(2a+2/a+m)=5
(14+4m)/(8+m)=5
14+4m=40+5m
m=14-40
m=-26
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式