在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的

(1)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的$\sqrt{3}$、2倍后得到曲线C2,... (1)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的$\sqrt{3}$、2倍后得到曲线C2, 展开
良驹绝影
2012-05-14 · TA获得超过13.6万个赞
知道大有可为答主
回答量:2.8万
采纳率:80%
帮助的人:1.3亿
展开全部
点(x,y)是曲线x²+y²=1上的点,(x',y')是C2上一点,则:
x'=√3x
y'=2y
得:
x=(1/√3)x'
y=(1/2)y'
因(x,y)在曲线x²+y²=1上,则:
[(1/√3)x']²+[(1/2)y']²=1
x'²/3+y'²/4=1
即变换后的曲线C2是:x²/3+y²/4=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式