在三角形ABC中,角A,B,C所对的对边长分别是a,b,c.
(1)设向量x=(sinB,sinC),向量y=(cosB,cosC),向量z=(cosB,-cosC),若z//(x+y),求tanB+tanC的值;(2)若sinAc...
(1)设向量x=(sinB,sinC),向量y=(cosB,cosC),向量z=(cosB,-cosC),若z//(x+y),求tanB+tanC的值; (2)若sinAcosC+3cosAsinC=0,证明:(a^2)-(c^2)=2b^2.
展开
2个回答
展开全部
x+y=(sinB+cosB,sinC+cosC)
z//(x+y)
cosB/(sinB+cosB)=-cosC/(sinC+cosC)
1/(tanB+1)=-1/(tanC+1)
tanB+1=-(tanC+1)
tanB+tanC=-2
sinAcosC+3cosAsinC=0
sinAcosC+cosAsinC=-2cosAsinC
sin(A+C)=-2cosAsinC=sinB
-2cosA=sinB/sinC=b/c
cosA=(b^2+c^2-a^2)/(2bc)=-b/(2c)
整理得
(a^2)-(c^2)=2b^2
z//(x+y)
cosB/(sinB+cosB)=-cosC/(sinC+cosC)
1/(tanB+1)=-1/(tanC+1)
tanB+1=-(tanC+1)
tanB+tanC=-2
sinAcosC+3cosAsinC=0
sinAcosC+cosAsinC=-2cosAsinC
sin(A+C)=-2cosAsinC=sinB
-2cosA=sinB/sinC=b/c
cosA=(b^2+c^2-a^2)/(2bc)=-b/(2c)
整理得
(a^2)-(c^2)=2b^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询