什么是微分方程的通解和特解?
展开全部
通解中含有任意常数,而特解是指含有特定常数。比如y=4x^2就是xy'=8x^2的特解,但是y=4x^2+C就是xy'=8x^2的通解,其中C为任意常数。
求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。
微分方程研究的来源
它的研究来源极广,历史久远。牛顿和G.W.莱布尼茨创造微分和积分运算时,指出了它们的互逆性,事实上这是解决了最简单的微分方程y'=f(x)的求解问题。当人们用微积分学去研究几何学、力学、物理学所提出的问题时,微分方程就大量地涌现出来。
牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用叫做“首次积分”的办法,完全解决了它的求解问题。
微测检测5.10
2023-07-11 广告
2023-07-11 广告
通解加C,C代表常数,特解不加C。通解是指满足这种形式的函数都是微分方程的解,例如y'=0的通解就是y=C,C是常数。通解是一个函数族特解顾名思义就是一个特殊的解,它是一个函数,这个函数是微分方程的解,但是微分方程可能还有别的解。如...
点击进入详情页
本回答由微测检测5.10提供
2012-05-17
展开全部
定义:若微分方程的解中含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相同,则称此解为微分方程的通解;而若微分方程的解不含任意常数,则称为微分方程的特解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
通解中含有任意常数,而特解是指含有特定常数。比如y=4x^2就是xy'=8x^2的特解,但是y=4x^2+C就是xy'=8x^2的通解,其中C为任意常数。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
微分方程的通解就是其次方程的解,特解就是非齐次方程的解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询