小学数学知识大全
嗯嗯、 就是那些奇数啊、偶数啊、倒数啊、质数啊… 什么的,是什么数什么数的、 搜集一下、并且备注这些数的意义、 谢谢、...
嗯嗯、 就是那些奇数啊、偶数啊、倒数啊、质数啊… 什么的,是什么数什么数的、 搜集一下、并且备注这些数的意义、 谢谢、
展开
5个回答
展开全部
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
24、比例的基本性质:在比例里,两外项之积等于两内项之积。
25、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
26、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
33、要学会把小数化成分数和把分数化成小数的化发。
34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
35、互质数: 公约数只有1的两个数,叫做互质数。
36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
39、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
42、个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
43、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
47、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
48、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
50、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3. 141592654
51、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
52、什么叫代数? 代数就是用字母代替数。
53、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
24、比例的基本性质:在比例里,两外项之积等于两内项之积。
25、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
26、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
33、要学会把小数化成分数和把分数化成小数的化发。
34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
35、互质数: 公约数只有1的两个数,叫做互质数。
36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
39、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
42、个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
43、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
47、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
48、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
50、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3. 141592654
51、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
52、什么叫代数? 代数就是用字母代替数。
53、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
展开全部
第一单元 数与代数
(一)数的认识
整数【正数、0、负数】
1、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。
2、最小的一位数是1,最小的自然数是0。
3、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。+4也可以写成4。
4、像+4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。
5、0既不是正数,也不是负数。正数都大于0,负数都小于0。
6、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
通常情况下,盈利用正数表示,亏损用负数表示。
通常情况下,上车人数用正数表示,下车人数用负数表示。
通常情况下,收入用正数表示,支出用负数表示。
通常情况下,上升用正数表示,下降用负数表示。
小数【有限小数、无限小数】
1、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。
3、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。
4、小数点位置移动引起小数大小变化的规律
一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……
一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……
5、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
6、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
7、把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
8、求小数近似数的一般方法:
(1)先要弄清保留几位小数;
(2)根据需要确定看哪一位上的数;
(3)用“四舍五入”的方法求得结果。
9、整数和小数的数位顺序表:
整 数 部 分 小数点 小 数 部 分
… 亿 级 万 级 个 级
数位 … 千亿位 百亿位 十亿位 亿
位 千万位 百万位 十万位 万
位 千
位 百
位 十
位 个
位 • 十分位 百分位 千分位 万分位 …
计数单位 … 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 个(一) 十分之一 百分之一 千分之一 万分之一 …
分数【真分数、假分数】
1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。
2、两个数相除,它们的商可以用分数表示。即:a÷b= (b≠0)
3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000……的分数。
4、分数可以分为真分数和假分数。
5、分子小于分母的分数叫做真分数。真分数小于1。
6、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。
7、分子和分母只有公因数1的分数叫做最简分数。
8、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
9、小数的性质和分数的基本性质是一致的,应用分数的基本性质,可以通分和约分。
百分数【税率、利息、折扣、成数】
1、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或
百分比,百分数通常用“%”表示。
2、分数与百分数比较:
不同点 相同点
分 数 可以表示具体数量,可以有单位名称 表示两个数之间的关系
百分数 不可以表示具体数量,不可以有单位名称
3、分数、小数、百分数的互化。
(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
4、熟记常用三数的互化。
=0.5=50%
≈0.333=33.3%
≈0.667=66.7%
=0.25=25%
=0.75=75%
=0.2=20%
=0.4=40%
=0.6=60%
=0.8=80%
≈0.167=16.7%
≈0.833=83.3%
=0.125=12.5%
=0.375=37.5%
=0.625=62.5%
=0.875=87.5%
=0.1=10%
=0.3=30%
=0.7=70%
=0.9=90%
=0.05=5%
=0.15=15%
=0.35=35%
=0.45=45%
=0.55=55%
=0.65=65%
=0.85=85%
=0.95=95%
=0.04=4%
=0.025=2.5%
=0.02=2%
=0.01=1%
5、出勤率表示出勤人数占总人数的百分之几。
合格率表示合格件数占总件数的百分之几。
成活率表示成活棵数占总棵数的百分之几。
6、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
7、多的÷“1”=多百分之几 少的÷“1”=少百分之几
8、应得利息是税前利息,实得利息是税后利息。
9、利息=本金×利率×时间
10、应得利息-利息税=实得利息
11、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。
12、原价×折扣=现价 现价÷原价=折扣 现价÷折扣=原价
13、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。
因数与倍数【素数、合数、奇数、偶数】
1、4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
2、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
3、一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。
一个数最大的因数等于这个数最小的倍数。
4、5的倍数:个位上的数是5或0。
2的倍数:个位上的数是2、4、6、8或0。2的倍数都是双数。
3的倍数:各位上数的和一定是3的倍数。
5、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。
6、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。
7、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。
8、在1—20这些数中: (1既不是素数,也不是合数)
奇数:1、3、5、7、9、11、13、15、17、19。
偶数:2、4、6、8、10、12、14、16、18、20。
素数:2、3、5、7、11、13、17、19。(共8个,和为77。)
合数:4、6、8、9、10、12、14、15、16、18、20。(共11个,和为132。)
9、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。
10、两个素数的积一定是合数。
11、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。几个数的公倍数也是无限的。
12、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数。两个数的公因数也是有限的。
13、两个数的最小公倍数一定是它们的最大公因数的倍数。
14、求最大公因数和最小公倍数的方法:
倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
互质关系的两个数(两个数只有公因数1),最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用小数列举法或短除法,求最小公倍数用大数翻倍法或短除法。
两数之积等于两数的最小公倍数与最大公因数的积。两数之积除以最大公因数得到最小公倍数(A×B÷最大公因数=最小公倍数)。
(一)数的认识
整数【正数、0、负数】
1、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。
2、最小的一位数是1,最小的自然数是0。
3、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。+4也可以写成4。
4、像+4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。
5、0既不是正数,也不是负数。正数都大于0,负数都小于0。
6、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
通常情况下,盈利用正数表示,亏损用负数表示。
通常情况下,上车人数用正数表示,下车人数用负数表示。
通常情况下,收入用正数表示,支出用负数表示。
通常情况下,上升用正数表示,下降用负数表示。
小数【有限小数、无限小数】
1、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。
3、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。
4、小数点位置移动引起小数大小变化的规律
一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……
一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……
5、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
6、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
7、把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
8、求小数近似数的一般方法:
(1)先要弄清保留几位小数;
(2)根据需要确定看哪一位上的数;
(3)用“四舍五入”的方法求得结果。
9、整数和小数的数位顺序表:
整 数 部 分 小数点 小 数 部 分
… 亿 级 万 级 个 级
数位 … 千亿位 百亿位 十亿位 亿
位 千万位 百万位 十万位 万
位 千
位 百
位 十
位 个
位 • 十分位 百分位 千分位 万分位 …
计数单位 … 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 个(一) 十分之一 百分之一 千分之一 万分之一 …
分数【真分数、假分数】
1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。
2、两个数相除,它们的商可以用分数表示。即:a÷b= (b≠0)
3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000……的分数。
4、分数可以分为真分数和假分数。
5、分子小于分母的分数叫做真分数。真分数小于1。
6、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。
7、分子和分母只有公因数1的分数叫做最简分数。
8、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
9、小数的性质和分数的基本性质是一致的,应用分数的基本性质,可以通分和约分。
百分数【税率、利息、折扣、成数】
1、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或
百分比,百分数通常用“%”表示。
2、分数与百分数比较:
不同点 相同点
分 数 可以表示具体数量,可以有单位名称 表示两个数之间的关系
百分数 不可以表示具体数量,不可以有单位名称
3、分数、小数、百分数的互化。
(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
4、熟记常用三数的互化。
=0.5=50%
≈0.333=33.3%
≈0.667=66.7%
=0.25=25%
=0.75=75%
=0.2=20%
=0.4=40%
=0.6=60%
=0.8=80%
≈0.167=16.7%
≈0.833=83.3%
=0.125=12.5%
=0.375=37.5%
=0.625=62.5%
=0.875=87.5%
=0.1=10%
=0.3=30%
=0.7=70%
=0.9=90%
=0.05=5%
=0.15=15%
=0.35=35%
=0.45=45%
=0.55=55%
=0.65=65%
=0.85=85%
=0.95=95%
=0.04=4%
=0.025=2.5%
=0.02=2%
=0.01=1%
5、出勤率表示出勤人数占总人数的百分之几。
合格率表示合格件数占总件数的百分之几。
成活率表示成活棵数占总棵数的百分之几。
6、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
7、多的÷“1”=多百分之几 少的÷“1”=少百分之几
8、应得利息是税前利息,实得利息是税后利息。
9、利息=本金×利率×时间
10、应得利息-利息税=实得利息
11、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。
12、原价×折扣=现价 现价÷原价=折扣 现价÷折扣=原价
13、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。
因数与倍数【素数、合数、奇数、偶数】
1、4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
2、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
3、一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。
一个数最大的因数等于这个数最小的倍数。
4、5的倍数:个位上的数是5或0。
2的倍数:个位上的数是2、4、6、8或0。2的倍数都是双数。
3的倍数:各位上数的和一定是3的倍数。
5、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。
6、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。
7、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。
8、在1—20这些数中: (1既不是素数,也不是合数)
奇数:1、3、5、7、9、11、13、15、17、19。
偶数:2、4、6、8、10、12、14、16、18、20。
素数:2、3、5、7、11、13、17、19。(共8个,和为77。)
合数:4、6、8、9、10、12、14、15、16、18、20。(共11个,和为132。)
9、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。
10、两个素数的积一定是合数。
11、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。几个数的公倍数也是无限的。
12、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数。两个数的公因数也是有限的。
13、两个数的最小公倍数一定是它们的最大公因数的倍数。
14、求最大公因数和最小公倍数的方法:
倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
互质关系的两个数(两个数只有公因数1),最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用小数列举法或短除法,求最小公倍数用大数翻倍法或短除法。
两数之积等于两数的最小公倍数与最大公因数的积。两数之积除以最大公因数得到最小公倍数(A×B÷最大公因数=最小公倍数)。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一单元 数与代数
(一)数的认识
整数【正数、0、负数】
1、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。
2、最小的一位数是1,最小的自然数是0。
3、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。+4也可以写成4。
4、像+4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。
5、0既不是正数,也不是负数。正数都大于0,负数都小于0。
6、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
通常情况下,盈利用正数表示,亏损用负数表示。
通常情况下,上车人数用正数表示,下车人数用负数表示。
通常情况下,收入用正数表示,支出用负数表示。
通常情况下,上升用正数表示,下降用负数表示。
小数【有限小数、无限小数】
1、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。
3、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。
4、小数点位置移动引起小数大小变化的规律
一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……
一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……
5、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
6、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
7、把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
8、求小数近似数的一般方法:
(1)先要弄清保留几位小数;
(2)根据需要确定看哪一位上的数;
(3)用“四舍五入”的方法求得结果。
9、整数和小数的数位顺序表:
整 数 部 分 小数点 小 数 部 分
… 亿 级 万 级 个 级
数位 … 千亿位 百亿位 十亿位 亿
位 千万位 百万位 十万位 万
位 千
位 百
位 十
位 个
位 • 十分位 百分位 千分位 万分位 …
计数单位 … 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 个(一) 十分之一 百分之一 千分之一 万分之一 …
分数【真分数、假分数】
1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。
2、两个数相除,它们的商可以用分数表示。即:a÷b= (b≠0)
3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000……的分数。
4、分数可以分为真分数和假分数。
5、分子小于分母的分数叫做真分数。真分数小于1。
6、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。
7、分子和分母只有公因数1的分数叫做最简分数。
8、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
9、小数的性质和分数的基本性质是一致的,应用分数的基本性质,可以通分和约分。
百分数【税率、利息、折扣、成数】
1、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或
百分比,百分数通常用“%”表示。
2、分数与百分数比较:
不同点 相同点
分 数 可以表示具体数量,可以有单位名称 表示两个数之间的关系
百分数 不可以表示具体数量,不可以有单位名称
3、分数、小数、百分数的互化。
(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
4、熟记常用三数的互化。
第一单元 数与代数
(一)数的认识
整数【正数、0、负数】
1、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。
2、最小的一位数是1,最小的自然数是0。
3、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。+4也可以写成4。
4、像+4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。
5、0既不是正数,也不是负数。正数都大于0,负数都小于0。
6、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
通常情况下,盈利用正数表示,亏损用负数表示。
通常情况下,上车人数用正数表示,下车人数用负数表示。
通常情况下,收入用正数表示,支出用负数表示。
通常情况下,上升用正数表示,下降用负数表示。
小数【有限小数、无限小数】
1、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。
3、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。
4、小数点位置移动引起小数大小变化的规律
一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……
一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……
5、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
6、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
7、把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
8、求小数近似数的一般方法:
(1)先要弄清保留几位小数;
(2)根据需要确定看哪一位上的数;
(3)用“四舍五入”的方法求得结果。
9、整数和小数的数位顺序表:
整 数 部 分 小数点 小 数 部 分
… 亿 级 万 级 个 级
数位 … 千亿位 百亿位 十亿位 亿
位 千万位 百万位 十万位 万
位 千
位 百
位 十
位 个
位 • 十分位 百分位 千分位 万分位 …
计数单位 … 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 个(一) 十分之一 百分之一 千分之一 万分之一 …
分数【真分数、假分数】
1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。
2、两个数相除,它们的商可以用分数表示。即:a÷b= (b≠0)
3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000……的分数。
4、分数可以分为真分数和假分数。
5、分子小于分母的分数叫做真分数。真分数小于1。
6、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。
7、分子和分母只有公因数1的分数叫做最简分数。
8、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
9、小数的性质和分数的基本性质是一致的,应用分数的基本性质,可以通分和约分。
百分数【税率、利息、折扣、成数】
1、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或
百分比,百分数通常用“%”表示。
2、分数与百分数比较:
不同点 相同点
分 数 可以表示具体数量,可以有单位名称 表示两个数之间的关系
百分数 不可以表示具体数量,不可以有单位名称
3、分数、小数、百分数的互化。
(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
4、熟记常用三数的互化。
=0.5=50%
≈0.333=33.3%
≈0.667=66.7%
=0.25=25%
=0.75=75%
=0.2=20%
=0.4=40%
=0.6=60%
=0.8=80%
≈0.167=16.7%
≈0.833=83.3%
=0.125=12.5%
=0.375=37.5%
=0.625=62.5%
=0.875=87.5%
=0.1=10%
=0.3=30%
=0.7=70%
=0.9=90%
=0.05=5%
=0.15=15%
=0.35=35%
=0.45=45%
=0.55=55%
=0.65=65%
=0.85=85%
=0.95=95%
=0.04=4%
=0.025=2.5%
=0.02=2%
=0.01=1%
5、出勤率表示出勤人数占总人数的百分之几。
合格率表示合格件数占总件数的百分之几。
成活率表示成活棵数占总棵数的百分之几。
6、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
7、多的÷“1”=多百分之几 少的÷“1”=少百分之几
8、应得利息是税前利息,实得利息是税后利息。
9、利息=本金×利率×时间
10、应得利息-利息税=实得利息
11、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。
12、原价×折扣=现价 现价÷原价=折扣 现价÷折扣=原价
13、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。
因数与倍数【素数、合数、奇数、偶数】
1、4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
2、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
3、一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。
一个数最大的因数等于这个数最小的倍数。
4、5的倍数:个位上的数是5或0。
2的倍数:个位上的数是2、4、6、8或0。2的倍数都是双数。
3的倍数:各位上数的和一定是3的倍数。
5、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。
6、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。
7、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。
8、在1—20这些数中: (1既不是素数,也不是合数)
奇数:1、3、5、7、9、11、13、15、17、19。
偶数:2、4、6、8、10、12、14、16、18、20。
素数:2、3、5、7、11、13、17、19。(共8个,和为77。)
合数:4、6、8、9、10、12、14、15、16、18、20。(共11个,和为132。)
9、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。
10、两个素数的积一定是合数。
11、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。几个数的公倍数也是无限的。
12、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数。两个数的公因数也是有限的。
13、两个数的最小公倍数一定是它们的最大公因数的倍数。
14、求最大公因数和最小公倍数的方法:
倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
互质关系的两个数(两个数只有公因数1),最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用小数列举法或短除法,求最小公倍数用大数翻倍法或短除法。
两数之积等于两数的最小公倍数与最大公因数的积。两数之积除以最大公因数得到最小公倍数(A×B÷最大公因数=最小公倍数)。
(一)数的认识
整数【正数、0、负数】
1、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。
2、最小的一位数是1,最小的自然数是0。
3、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。+4也可以写成4。
4、像+4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。
5、0既不是正数,也不是负数。正数都大于0,负数都小于0。
6、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
通常情况下,盈利用正数表示,亏损用负数表示。
通常情况下,上车人数用正数表示,下车人数用负数表示。
通常情况下,收入用正数表示,支出用负数表示。
通常情况下,上升用正数表示,下降用负数表示。
小数【有限小数、无限小数】
1、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。
3、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。
4、小数点位置移动引起小数大小变化的规律
一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……
一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……
5、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
6、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
7、把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
8、求小数近似数的一般方法:
(1)先要弄清保留几位小数;
(2)根据需要确定看哪一位上的数;
(3)用“四舍五入”的方法求得结果。
9、整数和小数的数位顺序表:
整 数 部 分 小数点 小 数 部 分
… 亿 级 万 级 个 级
数位 … 千亿位 百亿位 十亿位 亿
位 千万位 百万位 十万位 万
位 千
位 百
位 十
位 个
位 • 十分位 百分位 千分位 万分位 …
计数单位 … 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 个(一) 十分之一 百分之一 千分之一 万分之一 …
分数【真分数、假分数】
1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。
2、两个数相除,它们的商可以用分数表示。即:a÷b= (b≠0)
3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000……的分数。
4、分数可以分为真分数和假分数。
5、分子小于分母的分数叫做真分数。真分数小于1。
6、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。
7、分子和分母只有公因数1的分数叫做最简分数。
8、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
9、小数的性质和分数的基本性质是一致的,应用分数的基本性质,可以通分和约分。
百分数【税率、利息、折扣、成数】
1、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或
百分比,百分数通常用“%”表示。
2、分数与百分数比较:
不同点 相同点
分 数 可以表示具体数量,可以有单位名称 表示两个数之间的关系
百分数 不可以表示具体数量,不可以有单位名称
3、分数、小数、百分数的互化。
(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
4、熟记常用三数的互化。
第一单元 数与代数
(一)数的认识
整数【正数、0、负数】
1、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。
2、最小的一位数是1,最小的自然数是0。
3、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。+4也可以写成4。
4、像+4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。
5、0既不是正数,也不是负数。正数都大于0,负数都小于0。
6、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
通常情况下,盈利用正数表示,亏损用负数表示。
通常情况下,上车人数用正数表示,下车人数用负数表示。
通常情况下,收入用正数表示,支出用负数表示。
通常情况下,上升用正数表示,下降用负数表示。
小数【有限小数、无限小数】
1、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。
3、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。
4、小数点位置移动引起小数大小变化的规律
一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……
一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……
5、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
6、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
7、把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
8、求小数近似数的一般方法:
(1)先要弄清保留几位小数;
(2)根据需要确定看哪一位上的数;
(3)用“四舍五入”的方法求得结果。
9、整数和小数的数位顺序表:
整 数 部 分 小数点 小 数 部 分
… 亿 级 万 级 个 级
数位 … 千亿位 百亿位 十亿位 亿
位 千万位 百万位 十万位 万
位 千
位 百
位 十
位 个
位 • 十分位 百分位 千分位 万分位 …
计数单位 … 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 个(一) 十分之一 百分之一 千分之一 万分之一 …
分数【真分数、假分数】
1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。
2、两个数相除,它们的商可以用分数表示。即:a÷b= (b≠0)
3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000……的分数。
4、分数可以分为真分数和假分数。
5、分子小于分母的分数叫做真分数。真分数小于1。
6、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。
7、分子和分母只有公因数1的分数叫做最简分数。
8、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
9、小数的性质和分数的基本性质是一致的,应用分数的基本性质,可以通分和约分。
百分数【税率、利息、折扣、成数】
1、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或
百分比,百分数通常用“%”表示。
2、分数与百分数比较:
不同点 相同点
分 数 可以表示具体数量,可以有单位名称 表示两个数之间的关系
百分数 不可以表示具体数量,不可以有单位名称
3、分数、小数、百分数的互化。
(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
4、熟记常用三数的互化。
=0.5=50%
≈0.333=33.3%
≈0.667=66.7%
=0.25=25%
=0.75=75%
=0.2=20%
=0.4=40%
=0.6=60%
=0.8=80%
≈0.167=16.7%
≈0.833=83.3%
=0.125=12.5%
=0.375=37.5%
=0.625=62.5%
=0.875=87.5%
=0.1=10%
=0.3=30%
=0.7=70%
=0.9=90%
=0.05=5%
=0.15=15%
=0.35=35%
=0.45=45%
=0.55=55%
=0.65=65%
=0.85=85%
=0.95=95%
=0.04=4%
=0.025=2.5%
=0.02=2%
=0.01=1%
5、出勤率表示出勤人数占总人数的百分之几。
合格率表示合格件数占总件数的百分之几。
成活率表示成活棵数占总棵数的百分之几。
6、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
7、多的÷“1”=多百分之几 少的÷“1”=少百分之几
8、应得利息是税前利息,实得利息是税后利息。
9、利息=本金×利率×时间
10、应得利息-利息税=实得利息
11、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。
12、原价×折扣=现价 现价÷原价=折扣 现价÷折扣=原价
13、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。
因数与倍数【素数、合数、奇数、偶数】
1、4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
2、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
3、一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。
一个数最大的因数等于这个数最小的倍数。
4、5的倍数:个位上的数是5或0。
2的倍数:个位上的数是2、4、6、8或0。2的倍数都是双数。
3的倍数:各位上数的和一定是3的倍数。
5、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。
6、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。
7、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。
8、在1—20这些数中: (1既不是素数,也不是合数)
奇数:1、3、5、7、9、11、13、15、17、19。
偶数:2、4、6、8、10、12、14、16、18、20。
素数:2、3、5、7、11、13、17、19。(共8个,和为77。)
合数:4、6、8、9、10、12、14、15、16、18、20。(共11个,和为132。)
9、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。
10、两个素数的积一定是合数。
11、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。几个数的公倍数也是无限的。
12、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数。两个数的公因数也是有限的。
13、两个数的最小公倍数一定是它们的最大公因数的倍数。
14、求最大公因数和最小公倍数的方法:
倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
互质关系的两个数(两个数只有公因数1),最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用小数列举法或短除法,求最小公倍数用大数翻倍法或短除法。
两数之积等于两数的最小公倍数与最大公因数的积。两数之积除以最大公因数得到最小公倍数(A×B÷最大公因数=最小公倍数)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你去买一本小学数学基础知识
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |