一道高数题,求详解
2个回答
展开全部
F(x) = (f(x)-f(a))/(x-a)
F'(x) = [ (x-a)f'(x) - (f(x)-f(a)) ]/(x-a)^2
there exits b 属于(a,+无穷)such that
f'(b) = [f(x)-f(a)]/(x-a)
f(x) -f(a) = f'(b)(x-a)
F'(x) = [ (x-a)f'(x) - (f(x)-f(a)) ]/(x-a)^2
= [f'(x)-f'(b)]/(x-a)
there exit c 属于 (b, +无穷) such that
(f'(x) - f'(b)) /(x-b) = f''(c)
F'(x) = [f'(x)-f'(b)]/(x-a)
=[ [f'(x)-f'(b)]/(x-b) ] (x-b)/(x-a)
= f''(c)(x-b)/(x-a)
> 0 ( x>b>a)
F(x) is increasing
F'(x) = [ (x-a)f'(x) - (f(x)-f(a)) ]/(x-a)^2
there exits b 属于(a,+无穷)such that
f'(b) = [f(x)-f(a)]/(x-a)
f(x) -f(a) = f'(b)(x-a)
F'(x) = [ (x-a)f'(x) - (f(x)-f(a)) ]/(x-a)^2
= [f'(x)-f'(b)]/(x-a)
there exit c 属于 (b, +无穷) such that
(f'(x) - f'(b)) /(x-b) = f''(c)
F'(x) = [f'(x)-f'(b)]/(x-a)
=[ [f'(x)-f'(b)]/(x-b) ] (x-b)/(x-a)
= f''(c)(x-b)/(x-a)
> 0 ( x>b>a)
F(x) is increasing
追问
哥们英语很好么,我可以加你为QQ好友么?我经常遇到告诉和英语方面的问题 我打算考复旦大学的研究生,现在刚开始复习 我是很认真的
展开全部
由题意,f``(x)>0,则f`(x)在(a,+∞)递增,所以f`(x)>f`(a),所以f`(x)-f`(a)>0,因此函数f(x)-f(a)在
(a,,+∞)递增,所以f(x)-f(a)>f(a)-f(a)=0,
所以F`(x)=[f`(x)(x-a)+f(x)-f(a)]/(x-a)²>0,x∈(a,,+∞),故F(x)在a,,+∞)递增
(a,,+∞)递增,所以f(x)-f(a)>f(a)-f(a)=0,
所以F`(x)=[f`(x)(x-a)+f(x)-f(a)]/(x-a)²>0,x∈(a,,+∞),故F(x)在a,,+∞)递增
追问
f`(x)-f`(a)>0因此函数f(x)-f(a)在a正无穷上递增,这里理解有点问题f`(x)-f`(a)>0可以看作是f(x)-f(a)的导函数么
追答
不能,令g(x)=f(x)-f(a),则他在a正无穷上递增,所以g(x)>g(a)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询