如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=- 1 2 x
2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,点F在直线AD上且横坐标为6.菁优网(1)求该抛物线解析式并判断F点是否在该抛物线上;(...
2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,点F在直线AD上且横坐标为6.菁优网(1)求该抛物线解析式并判断F点是否在该抛物线上;(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒132个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.1.点M到PH的距离为1时,求t的值2.把PMH沿一边所在的直线对折,则第三个顶点能否落在抛物线上,写出t的值
展开
2014-05-18 · 知道合伙人人文行家
关注
展开全部
解:(1)∵矩形ABCO,B点坐标为(4,3)
∴C点坐标为(0,3)
∵抛物线y=-1/2x2+bx+c经过矩形ABCO的顶点B、C,
∴c=3 -8+4b+c=3
解得:c=3 b=2
∴该抛物线解析式y=-1/2x2+2x+3,
设直线AD的解析式为y=k1x+b1
∵A(4,0)、D(2,3),
∴4k1+b1=0 2k1+b1=3
∴k1=-3/2 b1=6
∴y=-3/2x+6
联立y=-3/2x+6 y=-1/2x2+2x+3
∵F点在第四象限,
∴F(6,-3);
(2)①∵E(0,6),∴CE=CO,(如图(1)),
连接CF交x轴于H′,过H′作x轴的垂线交BC于P′,当P
运动到P′,当H运动到H′时,EP+PH+HF的值最小.
设直线CF的解析式为y=k2x+b2
∵C(0,3)、F(6,-3),
∴b2=3 6k2+b2=-3
解得:k2=-1 b2=3
∴y=-x+3
当y=0时,x=3,
∴H′(3,0),
∴CP=3,∴t=3;
,
②如图1过M作MN⊥OA交OA于N,
∵△AMN∽△AEO,
∴AM/AE= AN /AO= MN/EO
∴(13/2×t)/2/13= AN/4= MN/6
∴AN=t,MN=3/2t
I如图3,当PM=HM时,M在PH的垂直平分线上,
∴MN=1/2PH,
∴MN=3/2t=3/2
∴t=1;
II如图2,当PH=HM时,MH=3,MN=3/2t
HN=OA-AN-OH=4-2t 在Rt△HMN中,MN2+HN2=MH2,
∴(3/2t)2+(4-2t)2=32,
即25t2-64t+28=0,
解得:t1=2(舍去),t2=14/25
III如图4,当PH=PM时,
∵PM=3,MT=|3-3/2t|,PT=BC-CP-BT=|4-2t|,
∴在Rt△PMT中,MT2+PT2=PM2,
即(3-3/2t)2+(4-2t)2=32,
∴25t2-100t+64=0,
解得:t1=16/5,t2=4/5
综上所述:t=14/25,4/5,1,16/5
如果对你有帮助 请给好评。
答题不容易 需要你的支持
如果有不懂的地方 请在新页面中提问
∴C点坐标为(0,3)
∵抛物线y=-1/2x2+bx+c经过矩形ABCO的顶点B、C,
∴c=3 -8+4b+c=3
解得:c=3 b=2
∴该抛物线解析式y=-1/2x2+2x+3,
设直线AD的解析式为y=k1x+b1
∵A(4,0)、D(2,3),
∴4k1+b1=0 2k1+b1=3
∴k1=-3/2 b1=6
∴y=-3/2x+6
联立y=-3/2x+6 y=-1/2x2+2x+3
∵F点在第四象限,
∴F(6,-3);
(2)①∵E(0,6),∴CE=CO,(如图(1)),
连接CF交x轴于H′,过H′作x轴的垂线交BC于P′,当P
运动到P′,当H运动到H′时,EP+PH+HF的值最小.
设直线CF的解析式为y=k2x+b2
∵C(0,3)、F(6,-3),
∴b2=3 6k2+b2=-3
解得:k2=-1 b2=3
∴y=-x+3
当y=0时,x=3,
∴H′(3,0),
∴CP=3,∴t=3;
,
②如图1过M作MN⊥OA交OA于N,
∵△AMN∽△AEO,
∴AM/AE= AN /AO= MN/EO
∴(13/2×t)/2/13= AN/4= MN/6
∴AN=t,MN=3/2t
I如图3,当PM=HM时,M在PH的垂直平分线上,
∴MN=1/2PH,
∴MN=3/2t=3/2
∴t=1;
II如图2,当PH=HM时,MH=3,MN=3/2t
HN=OA-AN-OH=4-2t 在Rt△HMN中,MN2+HN2=MH2,
∴(3/2t)2+(4-2t)2=32,
即25t2-64t+28=0,
解得:t1=2(舍去),t2=14/25
III如图4,当PH=PM时,
∵PM=3,MT=|3-3/2t|,PT=BC-CP-BT=|4-2t|,
∴在Rt△PMT中,MT2+PT2=PM2,
即(3-3/2t)2+(4-2t)2=32,
∴25t2-100t+64=0,
解得:t1=16/5,t2=4/5
综上所述:t=14/25,4/5,1,16/5
如果对你有帮助 请给好评。
答题不容易 需要你的支持
如果有不懂的地方 请在新页面中提问
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询