解方程1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4).....1/(x-2011)(x-2012)=2012
另外,化简下面的代数式1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4).....1/(x-2011)(x-2012)...
另外,化简下面的代数式
1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4).....1/(x-2011)(x-2012) 展开
1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4).....1/(x-2011)(x-2012) 展开
2个回答
展开全部
1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4).....1/(x-2011)(x-2012)
=(1/(x-2)-1/(x-1))+(1/(x-3)-1/(x-2))......(1/(x-2012)-1/(x-2011))
=1/(x-2012)-1/(x-1)
1/(x-2012)-1/(x-1)=2012
X1=(2013+√(2033794876/503))/2
X2=(2013-√(2033794876/503))/2
=(1/(x-2)-1/(x-1))+(1/(x-3)-1/(x-2))......(1/(x-2012)-1/(x-2011))
=1/(x-2012)-1/(x-1)
1/(x-2012)-1/(x-1)=2012
X1=(2013+√(2033794876/503))/2
X2=(2013-√(2033794876/503))/2
展开全部
1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4).....1/(x-2011)(x-2012)
=1/(x-2012)(x-2011)+1/(x-2011)(x-2000)+......+1/(x-4)(x-3)+1/(x-3)(x-2)+1/(x-2)(x-1)
=1/(x-2012)-1/(x-2011)+1/(x-2011)-1/(x-2000)+...+1/(x-4)-1/(x-3)+1/(x-3)-1/(x-2)+1/(x-2)-1/(x-1)
=1/(x-2012)-1/(x-1)
=1/(x-2012)(x-2011)+1/(x-2011)(x-2000)+......+1/(x-4)(x-3)+1/(x-3)(x-2)+1/(x-2)(x-1)
=1/(x-2012)-1/(x-2011)+1/(x-2011)-1/(x-2000)+...+1/(x-4)-1/(x-3)+1/(x-3)-1/(x-2)+1/(x-2)-1/(x-1)
=1/(x-2012)-1/(x-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询