1个回答
展开全部
题目不完整。
已知二次函数y=ax2+bx+c的图象与x轴交于(x1,0)、(x2,0)两点,且0<x1<1,1<x2<2,与轴y交于点(0,-2).下列结论:①2a+b>1;②3a+b>0;③a-b<2;④a<-1.其中正确结论的个数为( )
解:如图:
0<x1<1,1<x2<2,并且图象与y轴相交于点(0,-2),
可知该抛物线开口向下即a<0,c=-2,
①当x=2时,y=4a+2b+c<0,即4a+2b<-c;
∵c=-2,
∴4a+2b<2,
∴2a+b<1,
故本选项错误;
②∵0<x1<1,1<x2<2,
∴1<x1+x2<3,
又∵x1+x2=-
b
a
,
∴1<-
b
a
<3,
∴3a+b<0,
故本选项错误;
③当x=-1时,y=a-b+c<0,
∵c=-2,
∴a-b<-c,
即a-b<2,
故本选项正确;
④∵0<x1x2<2,x1x2=
c
a
<2,
又∵c=-2,
∴a<-1.
故本选项正确.
故选C.
首先根据抛物线的开口方向判断出a的符号,再根据与y轴交点求出c=2,
①将x=2代入原方程,可知此时y<0,再根据c=-2即可求出2a+b<1;
②根据0<x1<1,1<x2<2判断出1<x1+x2<3,再根据x1+x2=-
b
a
,判断出1<-
b
a
<3,可知3a+b<0;
③将x=-1代入y=a-b+c<0,结合c=-2,可知a-b<-c,即得a-b<2;
④根据<x1x2<2和x1x2=
c
a
<2,求出c=-2,可判断a<-1.
已知二次函数y=ax2+bx+c的图象与x轴交于(x1,0)、(x2,0)两点,且0<x1<1,1<x2<2,与轴y交于点(0,-2).下列结论:①2a+b>1;②3a+b>0;③a-b<2;④a<-1.其中正确结论的个数为( )
解:如图:
0<x1<1,1<x2<2,并且图象与y轴相交于点(0,-2),
可知该抛物线开口向下即a<0,c=-2,
①当x=2时,y=4a+2b+c<0,即4a+2b<-c;
∵c=-2,
∴4a+2b<2,
∴2a+b<1,
故本选项错误;
②∵0<x1<1,1<x2<2,
∴1<x1+x2<3,
又∵x1+x2=-
b
a
,
∴1<-
b
a
<3,
∴3a+b<0,
故本选项错误;
③当x=-1时,y=a-b+c<0,
∵c=-2,
∴a-b<-c,
即a-b<2,
故本选项正确;
④∵0<x1x2<2,x1x2=
c
a
<2,
又∵c=-2,
∴a<-1.
故本选项正确.
故选C.
首先根据抛物线的开口方向判断出a的符号,再根据与y轴交点求出c=2,
①将x=2代入原方程,可知此时y<0,再根据c=-2即可求出2a+b<1;
②根据0<x1<1,1<x2<2判断出1<x1+x2<3,再根据x1+x2=-
b
a
,判断出1<-
b
a
<3,可知3a+b<0;
③将x=-1代入y=a-b+c<0,结合c=-2,可知a-b<-c,即得a-b<2;
④根据<x1x2<2和x1x2=
c
a
<2,求出c=-2,可判断a<-1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询