1个回答
展开全部
分析(1)欲证A1D⊥平面ABC1D1,根据直线与平面垂直的判定定理可知只需证A1D与平面ABC1D1内两相交直线垂直,而根据条件可知AB⊥A1D,AD1⊥A1D,又AD1∩AB=A,满足定理所需条件;
(2)欲证BD1∥平面A1DE,根据直线与平面平行的判定定理可知只需证BD1与平面A1DE内一直线平行即可,根据中位线可知OE∥BD1,又OE⊂平面A1DE,BD1⊄平面A1DE,满足定理所需条件.
解答:
(1)因为AB⊥平面ADD1A1,A1D⊂平面ADD1A1,
所以AB⊥A1D.
因为ADD1A1为正方形,所以AD1⊥A1D,
又AD1∩AB=A,所以A1D⊥平面ABC1D1.
(2)设AD1,A1D的交点为O,连接OE,
因为ADD1A1为正方形,所以O是AD1的中点,
在△AD1B中,OE为中位线,所以OE∥BD1,
又OE⊂平面A1DE,BD1⊄平面A1DE,
所以BD1∥平面A1DE.
(2)欲证BD1∥平面A1DE,根据直线与平面平行的判定定理可知只需证BD1与平面A1DE内一直线平行即可,根据中位线可知OE∥BD1,又OE⊂平面A1DE,BD1⊄平面A1DE,满足定理所需条件.
解答:
(1)因为AB⊥平面ADD1A1,A1D⊂平面ADD1A1,
所以AB⊥A1D.
因为ADD1A1为正方形,所以AD1⊥A1D,
又AD1∩AB=A,所以A1D⊥平面ABC1D1.
(2)设AD1,A1D的交点为O,连接OE,
因为ADD1A1为正方形,所以O是AD1的中点,
在△AD1B中,OE为中位线,所以OE∥BD1,
又OE⊂平面A1DE,BD1⊄平面A1DE,
所以BD1∥平面A1DE.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询