如图 写三棱柱A1B1C1-ABC中 侧面AA1C1C垂直底面ABC 侧面AA1C1C为菱形 角A1AC=60° E F分别是A1C1中点

求证EF∥平面BB1C1C2.CE⊥平面ABC... 求证 EF∥平面BB1C1C 2.CE⊥平面ABC 展开
Angelia789
2013-06-16
知道答主
回答量:17
采纳率:0%
帮助的人:8万
展开全部
证明:(1)取BC中点M,连接FM,C1M,
在△ABC中,因为F,M分别为BA、BC的中点,
所以FM,
因为E为A1C1的中点,AC,
所以EF∥EC1,从而四边形EFMC1为平行四边形,
所以EF∥C1M,
又因为C1M?平面BB1C1C,EF?平面BB1C1C,
EF∥平面BB1C1C;
(2)在平面AA1C1C内,作A1O⊥AC,O为垂足,
因为∠A1AC=60°,
所以AO=AA1=AC,
从而O为AC的中点.
所以OCA1E,因而ECA1O1,
因为侧面AA1C1C⊥底面ABC,交线为AC,A1O⊥AC,
所以A1O⊥面ABC.
所以EC⊥面ABC,
又因为EC平面EFC,
所以平面CEF⊥平面ABC.
男人窝
2012-05-21 · 超过13用户采纳过TA的回答
知道答主
回答量:113
采纳率:0%
帮助的人:13.9万
展开全部
图呢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式