若(向量)a,(向量)b是两个不共线的非零向量,(向量)a与(向量)b起点相同,则当t为何值时,(
若(向量)a,(向量)b是两个不共线的非零向量,(向量)a与(向量)b起点相同,则当t为何值时,(向量)a,t(向量)b,1/3((向量)a+(向量)b)三向量的终点在同...
若(向量)a,(向量)b是两个不共线的非零向量,(向量)a与(向量)b起点相同,则当t为何值时,(向量)a,t(向量)b,1/3((向量)a+(向量)b)三向量的终点在同一条直线上?
展开
展开全部
(1)向量CA=OA-OC=a-(1/3)(a+b)=(2/3)a-(1/3)b,
CB=OB-OC=tb-(1/3)(a+b)=(-1/3)a+(t-1/3)b,
ab=-1/2,
∴向量CA*CB=(-2/9)a^2+(2t/3-1/9)ab+(1/9-t/3)b^2
=-2/9+1/18-t/3+1/9-t/3
=-2t/3-1/18<0,
∴t>-1/12时∠ACB为钝角.
(2)f(x)=|a-bsinx|,
[f(x)]^2=a^2-2absinx+b^2(sinx)^2=1+sinx+(sinx)^2=(sinx+1/2)^2+3/4,x∈[0,2π],
∴[f(x)]^2的值域是[3/4,3],
∴f(x)的值域是[√3/2,√3].
这样可以么?
CB=OB-OC=tb-(1/3)(a+b)=(-1/3)a+(t-1/3)b,
ab=-1/2,
∴向量CA*CB=(-2/9)a^2+(2t/3-1/9)ab+(1/9-t/3)b^2
=-2/9+1/18-t/3+1/9-t/3
=-2t/3-1/18<0,
∴t>-1/12时∠ACB为钝角.
(2)f(x)=|a-bsinx|,
[f(x)]^2=a^2-2absinx+b^2(sinx)^2=1+sinx+(sinx)^2=(sinx+1/2)^2+3/4,x∈[0,2π],
∴[f(x)]^2的值域是[3/4,3],
∴f(x)的值域是[√3/2,√3].
这样可以么?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询