微分方程有什么用处?有哪些应用
在生物学及经济学中,微分方程用来作为复杂系统的数学模型。微分方程的数学理论最早是和方程对应的科学领域一起出现,而微分方程的解就可以用在该领域中。不过有时二个截然不同的科学领域会形成相同的微分方程,此时微分方程对应的数学理论可以看到不同现象后面一致的原则。
例如考虑光和声音在空气中的传播,以及池塘水面上的波动,这些都可以用同一个二阶的偏微分方程来描述,此方程即为波动方程,因此可以将光和声音视为一种波,和水面上的水波有些类似之处。
约瑟夫·傅立叶所发展的热传导理论,其统御方程是另一个二阶偏微分方程-热传导方程式,扩散作用看似和热传导不同,但也适用同一个统御方程,而经济学中的布莱克-休斯方程也和热传导方程有关。
扩展资料:
微分方程相关概念:
常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。
这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。
参考资料来源:百度百科-常微分方程
参考资料来源:百度百科-微分方程