
若f(x)在区间[0,1]上连续 在(0,1)上可微,且f(0)=1,f(1)=0.试证:在(0,1)内至少有一点x使f(x)+xf'(x)=0
2个回答
展开全部
令F(x)=xf(x),则F'(x)=f(x)+xf'(x),显然
F(0)=0,F(1)=f(1)=0,有Rolle中值定理得
存在c使得F'(c)=0,即
f(c)+cf'(c)=0。得证。
F(0)=0,F(1)=f(1)=0,有Rolle中值定理得
存在c使得F'(c)=0,即
f(c)+cf'(c)=0。得证。
追问
可以详细一点吗?
追答
这多详细啊,不需要再多写一句话了。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |