二重积分求解,各位高手帮忙,最好详细点解答,谢谢
F(x,y)=x/(y+1),区域D为:y=x的平方,y=2x,和x轴所围,求F(x,y)的二重积分。答案尽量详细点,谢谢...
F(x,y)=x/(y+1),区域D为:y=x的平方,y=2x,和x轴所围,求F(x,y)的二重积分。
答案尽量详细点,谢谢 展开
答案尽量详细点,谢谢 展开
1个回答
展开全部
你好!
积分区域会画吧
∫∫ F(x,y) = ∫[0,2] dx ∫ [x²,2x] x/(y+1) dy
= ∫[0,2] dx * xln(y+1) | [x²,2x]
= ∫[0,2] [ xln(2x+1) - xln(x²+1) ] dx
∫[0,2] xln(2x+1) dx
= 1/2 ∫[0,2] ln(2x+1) dx²
= 1/2 x²ln(2x+1) |[0,2] - 1/2 ∫ x² dln(2x+1)
= 2ln5 - ∫[0,2] x² / (2x+1) dx
= 2ln5 - ∫[0,2] [ (2x-1)/4 + 1/ (4(2x+1)) ] dx
= 2ln5 - [ (x²-x)/4 + 1/8 ln(2x+1) ] [0,2]
= 2ln5 - (1/2 + 1/8 ln5)
= 15/8 ln5 - 1/2
∫[0,2] xln(x²+1) dx
= 1/2 ∫[0,2] ln(x²+1) dx²
=1/2 x²ln(x²+1) |[0,2] - 1/2 ∫[0,2] x² dln(x²+1)
= 2ln5 - ∫[0,2] x³ / (x²+1) dx
= 2ln5 - ∫[0,2] [ x - x/(x²+1) ] dx
= 2ln5 - [ x²/2 - 1/2 ln(x²+1) ] [0,2]
= 2ln5 - (2 - 1/2 ln5)
= 5/2 ln5 - 2
∴原式 = 15/8 ln5 - 1/2 - (5/2 ln5 - 2) = (12 - 5ln5) /8
积分区域会画吧
∫∫ F(x,y) = ∫[0,2] dx ∫ [x²,2x] x/(y+1) dy
= ∫[0,2] dx * xln(y+1) | [x²,2x]
= ∫[0,2] [ xln(2x+1) - xln(x²+1) ] dx
∫[0,2] xln(2x+1) dx
= 1/2 ∫[0,2] ln(2x+1) dx²
= 1/2 x²ln(2x+1) |[0,2] - 1/2 ∫ x² dln(2x+1)
= 2ln5 - ∫[0,2] x² / (2x+1) dx
= 2ln5 - ∫[0,2] [ (2x-1)/4 + 1/ (4(2x+1)) ] dx
= 2ln5 - [ (x²-x)/4 + 1/8 ln(2x+1) ] [0,2]
= 2ln5 - (1/2 + 1/8 ln5)
= 15/8 ln5 - 1/2
∫[0,2] xln(x²+1) dx
= 1/2 ∫[0,2] ln(x²+1) dx²
=1/2 x²ln(x²+1) |[0,2] - 1/2 ∫[0,2] x² dln(x²+1)
= 2ln5 - ∫[0,2] x³ / (x²+1) dx
= 2ln5 - ∫[0,2] [ x - x/(x²+1) ] dx
= 2ln5 - [ x²/2 - 1/2 ln(x²+1) ] [0,2]
= 2ln5 - (2 - 1/2 ln5)
= 5/2 ln5 - 2
∴原式 = 15/8 ln5 - 1/2 - (5/2 ln5 - 2) = (12 - 5ln5) /8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询