解分式方程1/x(x-1) + 1/x(x+1) +1/(x+1)(x+2) +``` +1/(x+9)(x+10)=11/x-1 10
4个回答
展开全部
1/x(x-1) + 1/x(x+1) +1/(x+1)(x+2) +``` +1/(x+9)(x+10)=11/(x-1)
1/(x-1)-1/x+1/x-1/(x+1)+1/(x+1)-1/(x+2)+..........+1/(x+9)-1/(x+10)=11/(x-1)
1/(x-1)-1/(x+10)=11/(x-1)
[(x+10)-(x-1)]/(x-1)(x+10)=11/(x-1)
(x+10-x+1)/(x-1)(x+10)=11/(x-1)
11/(x-1)(x+10)=11/(x-1)
x+10=1
x=-9
经检验 x=-9是增根,所以方程无解
1/(x-1)-1/x+1/x-1/(x+1)+1/(x+1)-1/(x+2)+..........+1/(x+9)-1/(x+10)=11/(x-1)
1/(x-1)-1/(x+10)=11/(x-1)
[(x+10)-(x-1)]/(x-1)(x+10)=11/(x-1)
(x+10-x+1)/(x-1)(x+10)=11/(x-1)
11/(x-1)(x+10)=11/(x-1)
x+10=1
x=-9
经检验 x=-9是增根,所以方程无解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
X=-9
1/x(x-1) + 1/x(x+1) +1/(x+1)(x+2) +…+1/(x+9)(x+10)
=1/(x-1)-1/x+1/x-1/(x+1)+1/(x+1)-1/(x+2)+…+1/(x+9)-1/(x+10)
=1/(x-1)-1/(x+10)
=11/[(x-1)(x+10)]
原式可写成
11/[(x-1)(x+10)]=11/(x-1)
x=-9 为增根,愿方程无解
1/x(x-1) + 1/x(x+1) +1/(x+1)(x+2) +…+1/(x+9)(x+10)
=1/(x-1)-1/x+1/x-1/(x+1)+1/(x+1)-1/(x+2)+…+1/(x+9)-1/(x+10)
=1/(x-1)-1/(x+10)
=11/[(x-1)(x+10)]
原式可写成
11/[(x-1)(x+10)]=11/(x-1)
x=-9 为增根,愿方程无解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/(x-1)-1/x+1/x-1/(x+1) +1/(x+1)-1/(x+2)+.....+1/(x+9)-1/(x+10)=1/(x-1)-1/(x+10)=11/(x-1)(x+10)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询