展开全部
设t=sinx+cosx=√2sin(x+π/4)
∴ t∈[-√2,√2] 且t ≠-1
∵(sinx+cosx)²=1+2sinxcosx
∴sinxcosx=(t²-1)/2
∴y=sinxcosx/(1+sinx+cosx)
=[(t²-1)/2]/(1+t)=(t-1)(t+1)/[2(1+t)]
=(t-1)/2
∵t∈[-√2,√2] ∴-√2-1≤ t-1≤√2-1
∴-(√2+1)≤(t-1)/2≤(√2-1)/2
∵ t≠-1∴y≠-1
∴y的值域是[-(√2+1)/2,-1)U(-1, (√2-1)/2]
∴ t∈[-√2,√2] 且t ≠-1
∵(sinx+cosx)²=1+2sinxcosx
∴sinxcosx=(t²-1)/2
∴y=sinxcosx/(1+sinx+cosx)
=[(t²-1)/2]/(1+t)=(t-1)(t+1)/[2(1+t)]
=(t-1)/2
∵t∈[-√2,√2] ∴-√2-1≤ t-1≤√2-1
∴-(√2+1)≤(t-1)/2≤(√2-1)/2
∵ t≠-1∴y≠-1
∴y的值域是[-(√2+1)/2,-1)U(-1, (√2-1)/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询