
n≥2 ,n为正整数时,求证4/7≤1/(n+1)+1/(n+2)+...+1/(2n-1)+1/2n<√2/2
1个回答
展开全部
由[1/(n+1)+1/(n+2)+...+1/(2n-1)+1/(2n)][(n+1)+(n+2)+...+(2n)]
>[(n+1)/(n+1)+(n+2)/(n+2)+...+(2n)/(2n)]^2=n^2,
故1/(n+1)+1/(n+2)+...+1/(2n)>n^2/[(n+1)+(n+2)+...+(2n)]=n^2/[n(3n+1)/2]
=2/(3+1/n)≥2/(3+1/2)=4/7
又[1/(n+1) + 1/(n+2)+...+ 1/2n]^2
={[1/(n+1)]*1 + [1/(n+2)]*1+...+ [1/2n]*1}^2
<(1^2*n)*[1/(n+1)^2 + 1/(n+2)^2+...+ 1/(2n)^2]
<n*[1/n(n+1)+1/(n+1)(n+2)+...+1/2n(2n-1)]
=n*[1/n-1/(n+1)+1/(n+1)-1/(n+2)+...+1/(2n-1)-1/2n)]
=n*(1/n-1/2n)
=1/2
∴1/(n+1)+1/(n+2)+...+1/(2n-1)+1/2n<√2/2
>[(n+1)/(n+1)+(n+2)/(n+2)+...+(2n)/(2n)]^2=n^2,
故1/(n+1)+1/(n+2)+...+1/(2n)>n^2/[(n+1)+(n+2)+...+(2n)]=n^2/[n(3n+1)/2]
=2/(3+1/n)≥2/(3+1/2)=4/7
又[1/(n+1) + 1/(n+2)+...+ 1/2n]^2
={[1/(n+1)]*1 + [1/(n+2)]*1+...+ [1/2n]*1}^2
<(1^2*n)*[1/(n+1)^2 + 1/(n+2)^2+...+ 1/(2n)^2]
<n*[1/n(n+1)+1/(n+1)(n+2)+...+1/2n(2n-1)]
=n*[1/n-1/(n+1)+1/(n+1)-1/(n+2)+...+1/(2n-1)-1/2n)]
=n*(1/n-1/2n)
=1/2
∴1/(n+1)+1/(n+2)+...+1/(2n-1)+1/2n<√2/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询