月考题,求解
3个回答
2014-10-04
展开全部
解:AG=AF且AG⊥AF.
理由如下:①AF=AG,
∵BD、CE都是△ABC的高,
∴∠ACG+∠BAC=90°,∠FBA+∠BAC=90°,
∴∠ACG=∠FBA,
∵BF=AC,CG=AB,
∴△ACG≌△FBA,
∴AF=AG.
②AF⊥AG,
∵△ACG≌△FBA,
∴∠G=∠EAF,
∵CG⊥AB,
∴∠G+∠GAE=90°,
∴∠EAF+∠GAE=90°,
∴AG⊥AF,
∴AG=AF且AG⊥AF
理由如下:①AF=AG,
∵BD、CE都是△ABC的高,
∴∠ACG+∠BAC=90°,∠FBA+∠BAC=90°,
∴∠ACG=∠FBA,
∵BF=AC,CG=AB,
∴△ACG≌△FBA,
∴AF=AG.
②AF⊥AG,
∵△ACG≌△FBA,
∴∠G=∠EAF,
∵CG⊥AB,
∴∠G+∠GAE=90°,
∴∠EAF+∠GAE=90°,
∴AG⊥AF,
∴AG=AF且AG⊥AF
更多追问追答
追问
谢谢,已采纳
追答
嗯
2014-10-04
展开全部
AF=AG
追答
AF垂直AG
追问
呃,谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-10-04
展开全部
0
追问
呵呵,谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询