(2012?瑶海区三模)已知抛物线y=ax2+bx+c(a≠0)过点A(-3,0),B(1,0),C(0,3)三点.(1)求该
(2012?瑶海区三模)已知抛物线y=ax2+bx+c(a≠0)过点A(-3,0),B(1,0),C(0,3)三点.(1)求该抛物线的函数关系式;(2)若抛物线的顶点为P...
(2012?瑶海区三模)已知抛物线y=ax2+bx+c(a≠0)过点A(-3,0),B(1,0),C(0,3)三点.(1)求该抛物线的函数关系式;(2)若抛物线的顶点为P,连接PA、AC、CP,求△PAC的面积;(3)过点C作y轴的垂线,交抛物线于点D,连接PD、BD,BD交AC于点E,判断四边形PCED的形状,并说明理由.
展开
1个回答
展开全部
解答:(1)由题意得:
,
解得:
,
∴y=-x2-2x+3;
(2)∵y=-x2-2x+3=-(x+1)2+4,
∴P(-1,4),
∵A(-3,0),B(1,0),C(0,3),
∴PA=2
,PC=
,AC=3
,
∵PA2=PC2+AC2,
∴∠PCA=90°,
∴S△APC=
×AC×PC=
×
×3
=3;
(3)四边形PCED是正方形,
∵点C与点D关于抛物线的对称轴对称,点P为抛物线的顶点,
∴点D的坐标为(-2,3),PC=DP,
∵A(-3,0),C(0,3),代入y=ax+b,
,
解得:
,
∴直线AC的函数关系式是:y=x+3,
同理可得出:直线DP的函数关系式是:y=x+5,
∴AC∥DP,
同理可得:PC∥BD,
∴四边形PCED是菱形,
又∵∠PCA=90°,
∴四边形PCED是正方形.
|
解得:
|
∴y=-x2-2x+3;
(2)∵y=-x2-2x+3=-(x+1)2+4,
∴P(-1,4),
∵A(-3,0),B(1,0),C(0,3),
∴PA=2
5 |
2 |
2 |
∵PA2=PC2+AC2,
∴∠PCA=90°,
∴S△APC=
1 |
2 |
1 |
2 |
2 |
2 |
(3)四边形PCED是正方形,
∵点C与点D关于抛物线的对称轴对称,点P为抛物线的顶点,
∴点D的坐标为(-2,3),PC=DP,
∵A(-3,0),C(0,3),代入y=ax+b,
|
解得:
|
∴直线AC的函数关系式是:y=x+3,
同理可得出:直线DP的函数关系式是:y=x+5,
∴AC∥DP,
同理可得:PC∥BD,
∴四边形PCED是菱形,
又∵∠PCA=90°,
∴四边形PCED是正方形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询