如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ、D

如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点.连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交D... 如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F. (1)求证:△APE∽△ADQ;(2)设AP的长为x,试求△PEF的面积S △PEF 关于x的函数关系式,并求当P在何处时,S △PEF 取得最大值?最大值为多少?(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明) 展开
 我来答
紫露香烟眇难托
2014-11-03 · 超过51用户采纳过TA的回答
知道答主
回答量:103
采纳率:0%
帮助的人:125万
展开全部
(1)证∠APE=∠ADQ,∠AEP=∠AQD.
(2)注意到△APE∽△ADQ与△PDE∽△ADQ,及S △PEF =
得S △PEF = = .  ∴当 ,即P是AD的中点时,S △PEF 取得最大值 .
(3)作A关于直线BC的对称点A′,连DA′交BC于Q,则这个点Q就是使△ADQ周长最小的点,此时Q是BC的中点.

(1)证得∠APE=∠ADQ,∠AEP=∠AQD,即可得到△APE∽△ADQ;
(2)先由△APE∽△ADQ与△PDE∽△ADQ,及S △PEF =
得S △PEF = = ,根据二次函数的性质即可结果;
(3)作A关于直线BC的对称点A′,连DA′交BC于Q,则这个点Q就是使△ADQ周长最小的点,此时Q是BC的中点.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式