若等腰三角形被一条直线分割成两个较小的三角形也是等腰三角形,则原等腰三角形的顶角度数是______
若等腰三角形被一条直线分割成两个较小的三角形也是等腰三角形,则原等腰三角形的顶角度数是______....
若等腰三角形被一条直线分割成两个较小的三角形也是等腰三角形,则原等腰三角形的顶角度数是______.
展开
展开全部
解:(1)如图,△ABC中,AB=AC,BD=AD,AC=CD,求∠BAC的度数.
∵AB=AC,BD=AD,AC=CD,
∴∠B=∠C=∠BAD,∠CDA=∠CAD,
∵∠CDA=2∠B,
∴∠CAB=3∠B,
∵∠BAC+∠B+∠C=180°,
∴5∠B=180°,
∴∠B=36°,
∴∠BAC=108°.
(2)如图,△ABC中,AB=AC,AD=BD=CD,求∠BAC的度数.
∵AB=AC,AD=BD=CD,
∴∠B=∠C=∠DAC=∠DAB
∴∠BAC=2∠B
∵∠BAC+∠B+∠C=180°,
∴4∠B=180°,
∴∠B=45°,
∴∠BAC=90°.
(3)如图,△ABC中,AB=AC,BD=AD=BC,求∠BAC的度数.
∵AB=AC,BD=AD=BC,
∴∠B=∠C,∠A=∠ABD,∠BDC=∠C
∵∠BDC=2∠A,
∴∠C=2∠A=∠B,
∵∠A+∠ABC+∠C=180°,
∴5∠A=180°,
∴∠A=36°.
(4)如图,△ABC中,AB=AC,BD=AD,CD=BC,求∠BAC的度数.
假设∠A=x,AD=BD,
∴∠DBA=x,
∵AB=AC,
∴∠C=
,
∵CD=BC,
∴∠BDC=2x=∠DBC=
-x,
解得:x=
.
∴∠A=
.
故答案为:36°,90°,108°,
.
∵AB=AC,BD=AD,AC=CD,
∴∠B=∠C=∠BAD,∠CDA=∠CAD,
∵∠CDA=2∠B,
∴∠CAB=3∠B,
∵∠BAC+∠B+∠C=180°,
∴5∠B=180°,
∴∠B=36°,
∴∠BAC=108°.
(2)如图,△ABC中,AB=AC,AD=BD=CD,求∠BAC的度数.
∵AB=AC,AD=BD=CD,
∴∠B=∠C=∠DAC=∠DAB
∴∠BAC=2∠B
∵∠BAC+∠B+∠C=180°,
∴4∠B=180°,
∴∠B=45°,
∴∠BAC=90°.
(3)如图,△ABC中,AB=AC,BD=AD=BC,求∠BAC的度数.
∵AB=AC,BD=AD=BC,
∴∠B=∠C,∠A=∠ABD,∠BDC=∠C
∵∠BDC=2∠A,
∴∠C=2∠A=∠B,
∵∠A+∠ABC+∠C=180°,
∴5∠A=180°,
∴∠A=36°.
(4)如图,△ABC中,AB=AC,BD=AD,CD=BC,求∠BAC的度数.
假设∠A=x,AD=BD,
∴∠DBA=x,
∵AB=AC,
∴∠C=
180?x |
2 |
∵CD=BC,
∴∠BDC=2x=∠DBC=
180?x |
2 |
解得:x=
180° |
7 |
∴∠A=
180° |
7 |
故答案为:36°,90°,108°,
180° |
7 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询